

The U.S. Department of Energy Initiative on Battery Manufacturing

Patrick B. Davis
Program Manager, Vehicle Technologies, DOE

Meeting Global Challenges: US-German Innovation Policy

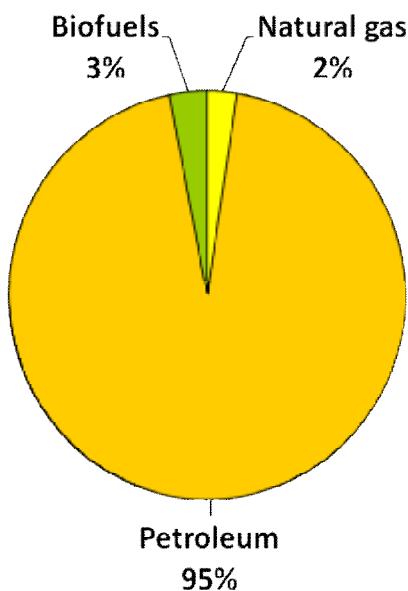
1 November 2010
The National Press Club
529 14th Street, NW
Washington, DC

DOE Vehicle Technologies Program Goals

Energy Efficiency &
Renewable Energy

Decrease petroleum dependency

Reduce greenhouse gases


- Develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum
- Develop technologies that provide Americans with greater freedom of mobility and energy security, with lower costs and lower impacts on the environment

We are Highly Dependent on Oil

Energy Efficiency &
Renewable Energy

U.S. transportation fuel share (2008)

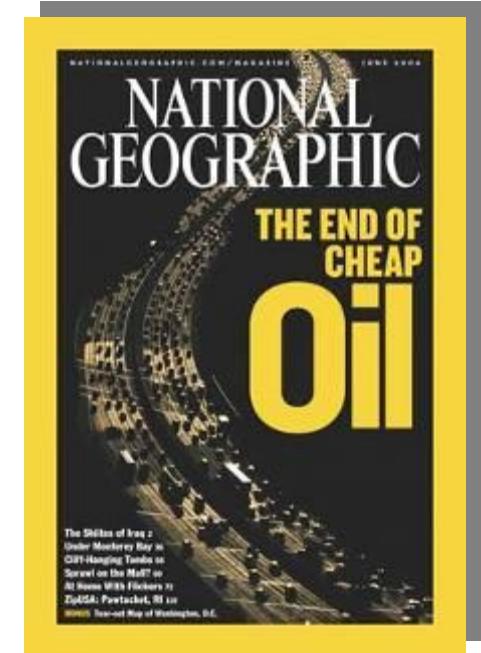
- Transportation is responsible for 2/3 of our petroleum usage
- On-Road vehicles responsible for ~80% of transportation petroleum usage

U.S. Vehicle Market

- > 240 Million vehicles on the road
- Approximately 11M new cars & light trucks for 2010; average is 15.7 M/yr 2002-2007
- Hybrid vehicles now <3% of sales

New Oil Reserves are Harder to Find

U.S. DEPARTMENT OF
ENERGY


Energy Efficiency &
Renewable Energy

- Global discovery of new oil fields peaked in 1966.
- U.S. oil *production* peaked in 1971.
- World oil production has hardly grown at all since 2005.

Source: Jeff Rubin, "Why the World is About to Get a Whole Lot Smaller"

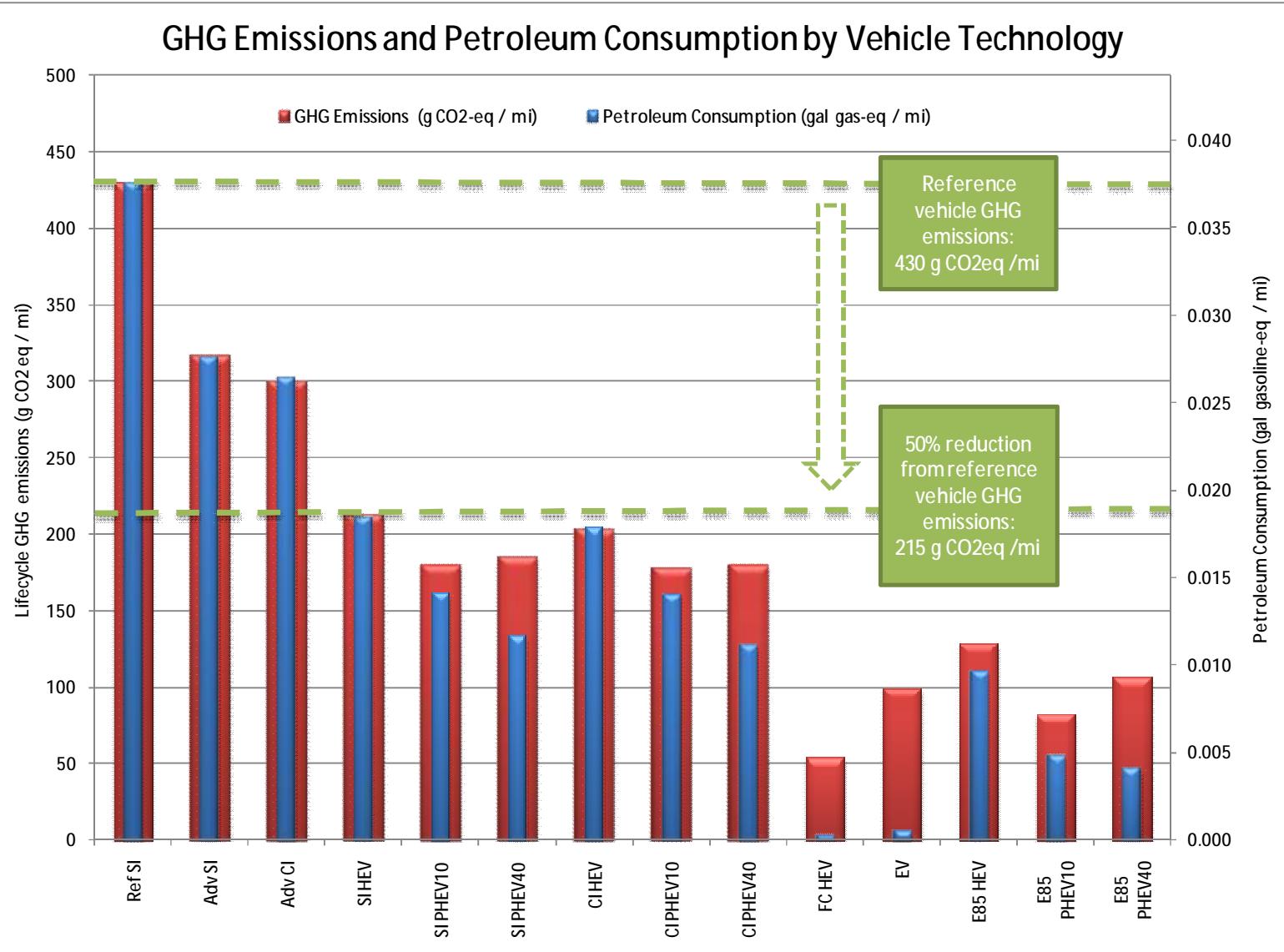
World Oil Production

2005: 84.58 mbpd
2006: 84.54 mbpd
2007: 84.40 mbpd
2008: 85.37 mbpd
2009: 84.24 mbpd

The Cost of Oil is More than Monetary

Analysis Informs Strategy

Projected Vehicle Technology for 2030



Energy Efficiency &
Renewable Energy

Vehicle GHG emissions fall into 3 major groups:

- Conventional
- Electric-drive
- Combination electric-drive & biofuel

Petroleum consumption loosely mirrors GHG emissions

Unprecedented Investment in Advanced Vehicle Technologies

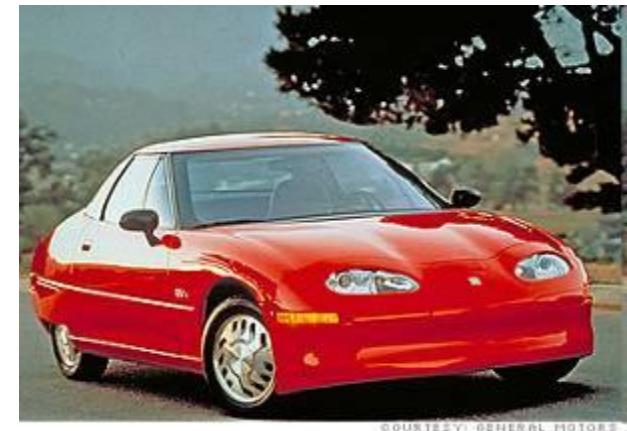
- A 50% increase in Vehicle Technologies Program budget in the last 2 years
 - 1/2 of our over \$311M budget directly on vehicle electrification initiatives
- \$25B Advanced Technology Vehicles Mfg Loan Program,
- The launch of ARPA-e
- The Recovery Act's greater than \$2.8B in grants for vehicle technology & demos

Other DOE Vehicle Activities

- VT ARRA Activities \$2.8 B
- ATVM Loan Program \$25.0 B
- Other DOE
 - Office of Science
 - ARPA-E
 - Office of Electricity

Open Questions About Electric Drive

U.S. DEPARTMENT OF
ENERGY

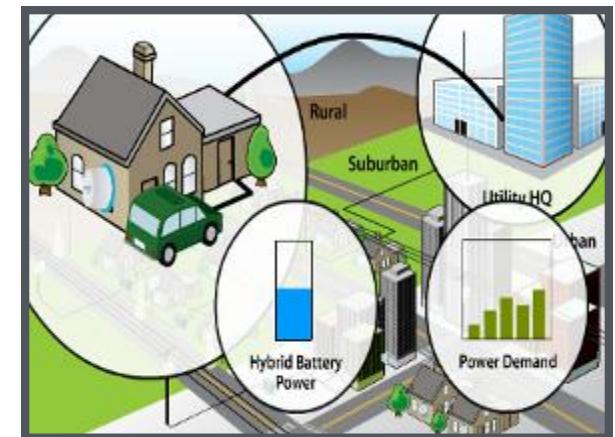

Energy Efficiency &
Renewable Energy

- What's Different This Time
- Grid Capacity
- Battery Cost
- Charging Infrastructure

What's Different This Time

U.S. DEPARTMENT OF
ENERGY | Energy Efficiency &
Renewable Energy

Answer:


- Urgency to Solve Energy and Environmental Challenges
- Battery Technology

Vehicle Electrification: Grid Impacts

U.S. DEPARTMENT OF
ENERGY

Energy Efficiency &
Renewable Energy

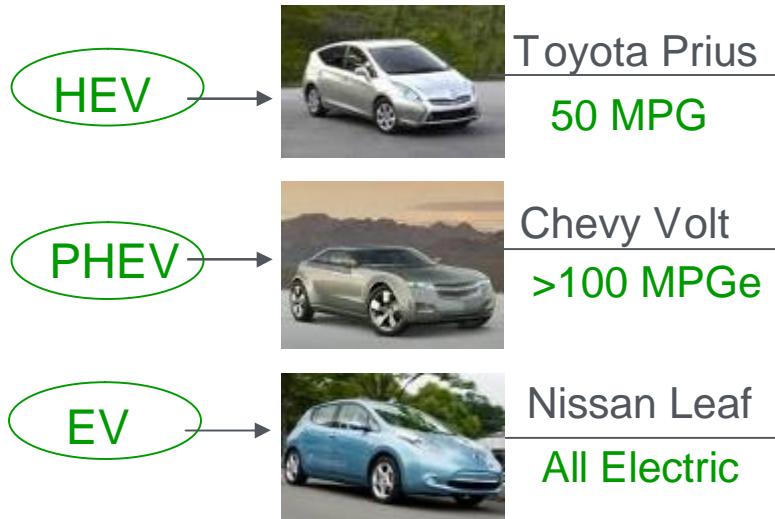
- In the U.S., current grid capacity could supply about 70% of our vehicles without adding capacity, but assumes:
 - vehicle would charge only during off-peak
 - “perfect” distribution of electricity
 - No localized affects such as overburdening neighborhood transformers
- EVs and PHEVs will not cause a grid “meltdown,” but we clearly need to work fast as vehicles are rolled out to reduce impacts
- Smart Charging will be key to lowering cost and minimizing impacts
- Time of day pricing also important

Buildout of Charging Infrastructure

Energy Efficiency &
Renewable Energy

- Key today: Home Charging
 - Need to get the cost and installation process right. Currently a significant barrier
- Public Charging
 - Expensive if not well utilized
 - Expensive to fully cover full driving patterns
- Ideally need market pull to determine public infrastructure build-out
 - PHEVs are key to help initiate market pull for public infrastructure

Hybrid-Electric Systems


Petroleum Displacement via Fuel Substitution & Improved Efficiency

Energy Efficiency &
Renewable Energy

Administration Goal: 1 Million PHEVs by 2015

Types of Vehicles and Benefits

System Cost

PHEV Battery Cost per kW-h

\$1,000 - \$1,200

\$700 - \$950

Goal = \$500

Goal = \$300

APEEM Cost per kW

\$22

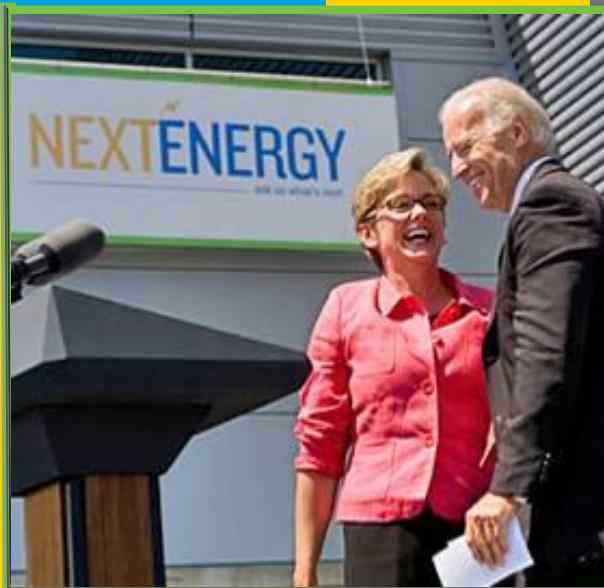
\$19

Goal = \$17

Goal = \$12

Cost reduction will occur primarily through improvements in chemistry – not manufacturing technology

Recovery Act : \$2.8 Billion Advanced Vehicle Technology Projects


U.S. DEPARTMENT OF
ENERGY

Energy Efficiency &
Renewable Energy

\$1.5 Billion in funding to accelerate the manufacturing and deployment of the next generation of U.S. batteries

\$500 Million in funding for electric-drive components manufacturing

\$400 Million in funding for transportation electrification

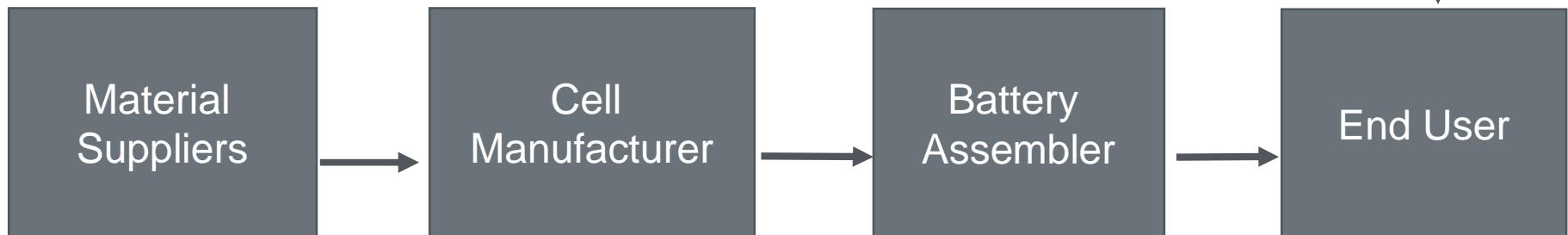
SuperTruck and Advanced Combustion R&D \$104.4 Million Solicitation:

Heavy-duty trucks are emphasized because they rapidly adopt new technologies and account for 20% of the fuel consumed in the United States.

Clean Cities: \$300M for Petroleum Displacement through Alternative Fuel Vehicles and Expanded Alternative Fuel Infrastructure

Recovery Act Opportunity Energy Storage Announcement

Energy Efficiency &
Renewable Energy


Recovery Act Approach

- FOA strategy
 - Establish a complete “value chain” for lithium battery manufacturing: from material supply, to cell production, to pack assembly
- Seed money to get started
 - 500,000 PEVs/yr = <5% of market
 - Sized to support market growth
- Expect industry to grow

Electric Drive
Component

Integrated Supply Chain

Battery Market Values

- **Lithium battery market worldwide currently:**
 - \$8 billion* (2009), largely consumer electronics applications
- **Hybrid vehicle battery market worldwide currently:**
 - largely nickel metal hydride
 - ~500,000 HEVs/yr @ ~\$3,000 each ==> ~\$1.5 billion
- **Market estimates for automotive lithium batteries (worldwide)**
 - 2015: ~800,000 EVs/yr** @ ~\$10,000 each ==> ~\$8 billion
 - 2020: ~6,000,000 EVs/yr** @ ~\$5,000 each ==> ~\$30 billion

* H. Takeshita, 26th International Battery Seminar, Ft Lauderdale, FL, March 2009

** Roland Berger, 2010; Pike Research, 2010

Recovery Act Battery Events

U.S. DEPARTMENT OF
ENERGY | Energy Efficiency &
Renewable Energy

President Obama at Compact Power

Secretary Chu at General Motors

President Obama at Celgard

Vice-President Biden at
Dow Kokam

Governor Granholm at
Toda America

Battery Manufacturing Facilities

Energy Efficiency &
Renewable Energy

Company	Location	Total Investment	Cell Manu.	Pack Assembly	Description
Johnson Controls	Holland, MI Lebanon, OR	\$600 M	✓	✓	Li-Ion: Nickel Metal Cobalt
A123 SYSTEMS	Romulus & Brownstown, MI	\$500 M	✓	✓	Li-Ion: Iron Phosphate
cpi compact power inc. a subsidiary of LG Chem	St. Clair & Holland, MI	\$390 M	✓		Li-Ion: Mixed Manganese
GM	Brownstown, MI	\$236 M		✓	
SAFT	Jacksonville, FL	\$191 M	✓	✓	Li-Ion: Nickel Metal Cobalt
DOW KOKAM	Midland, MI	\$490 M	✓	✓	Manganese Spinel
EXIDE BATTERIES	Bristol, TN & Columbus, GA	\$70 M	✓	✓	Spiral Wound AGM and Flat Plate Batteries
EAST PENN manufacturing co. inc.	Lyon Station, PA	\$98 M	✓	✓	Advanced VRLA and the Ultra Batteries
EnerDel	Indianapolis, IN	\$180 M	✓	✓	Li-Ion: Nickel Metal Cobalt

Battery Materials, Production and Recycling

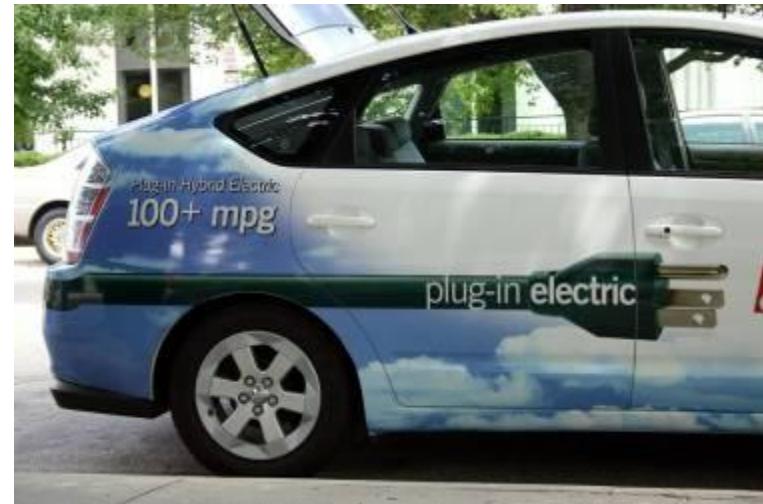
Energy Efficiency & Renewable Energy

Company	Location	Funding	Material	Description
BASF The Chemical Company	Elyria, OH	\$50 M	Cathode	Production of nickel-cobalt-metal cathode material for Li-ion batteries
TODA AMERICA	Goose Creek, SC	\$70 M	Cathode	Production of nickel-cobalt-metal cathode material for Li-ion batteries
Pyrotek	Sanborn, NY	\$23 M	Anode	Production of carbon powder anode material for Li-ion batteries
FUTURE FUEL CHEMICAL COMPANY Positive Chemistry. Sustainable Future.	Batesville, AR	\$25 M	Anode	Production of high-temp anode material for Li-ion batteries
NOVOLYTE technologies	Zachary, LA	\$41 M	Electrolyte	Production of electrolytes for Li-ion batteries
Honeywell	Buffalo, NY & Metropolis, IL	\$55 M	Electrolyte	Production of electrolyte salt for Li-ion batteries
CELGARD	Charlotte, NC & Aiken, SC	\$101 M	Separator	Production of polymer separator material for lithium-ion batteries
Chemetall	Silverpeak, NV & Kings Mtn., NC	\$60 M	Lithium	Production of battery-grade lithium carbonate and lithium hydroxide
enerG2 ADVANCED ENERGY TECHNOLOGY	Albany, OR	\$28 M	Carbon	Production of high-energy density nano-carbon for ultracapacitors
H&T Group	Holland, MI	\$10 M	Cell Casing	Manufacturing of precision aluminum casings for cylindrical cells
TOXCO	Lancaster, OH	\$19 M	Recycling	Hydrothermal recycling of Li-ion batteries
ENTEK MANUFACTURING INC.	Lebanon, OR	\$26 M	Separator	Production of battery separators for HEVs and EVs

Electric Drive Vehicle Components

Energy Efficiency &
Renewable Energy

Company	Location	Funding (DOE / Total)	Description
	Anderson, IN	\$60 M / \$120 M	Motor and Inverter Manufacturing
DELPHI	Kokomo, IN	\$89 M / \$179 M	Inverter, Converter, and Controller Manufacturing
	Indianapolis, IN	\$63 M / \$126 M	Production of Commercial Truck Hybrid Systems
	Sterling Heights, MI	\$63 M / \$125 M	Production of HEV and PHEV Transaxles
KEMET	Simpsonville, SC	\$15 M / \$32 M	DC Bus Capacitor Manufacturing
	Frederick, CO	\$45 M / \$90 M	Electric Propulsion System Manufacturing
	Barre, VT	\$9 M / \$18 M	DC Bus Capacitor Manufacturing
POWEREX	Youngwood, PA	\$6 M / \$9 M	Electric Drive Semiconductor Manufacturing
	Holly, MI; Muncie, IN	\$40 M / \$87 M	Inverter, Converter, Controller, Charger, and Electric Drive System Manufacturing
	White Marsh, MD; Wixom, MI	\$105 M / \$246 M	Electric Drive Motor and Unit Manufacturing


American Reinvestment and Recovery Act Transportation Electrification

U.S. DEPARTMENT OF
ENERGY

Energy Efficiency &
Renewable Energy

Transportation Electrification Demonstration Projects

- 8 Grants representing the largest ever coordinated deployment of electric-drive vehicles and charging infrastructure in the U.S.
 - Deployment of **7,000 electric-drive vehicles**, including light-duty, medium-duty, and heavy-duty passenger and commercial vehicles in a variety of climatic and operating environments
 - Installation of over 20,000 Level 2 (240VAC) vehicle charging sites at residential, commercial, and public locations and 350 Level 3 (500VDC) Fast Chargers
 - Collection of detailed operational data from vehicles and charging infrastructure, to evaluate and analyze vehicle usage, charging patterns, and potential grid impacts in preparation for broader, long-term deployment of vehicles and infrastructure

- 10 Grants to establish comprehensive educational and outreach programs focused on electric-drive vehicles
 - Funding of the first programs to educate first responders and emergency personnel in how to deal with accidents involving EVs and PHEVs

American Reinvestment and Recovery Act Smart Grid Investment Grants

Energy Efficiency &
Renewable Energy

(100 projects: \$3.4B Federal; \$4.7B non-Federal)

Smart Grid Systems and Equipment	Numbers of Units (self-reported estimates)	Improvements
Smart Meters	18,179,912	<ul style="list-style-type: none">• 13% of the 142 million customers in the U.S.
Load Control Devices	176,814	<ul style="list-style-type: none">• Enables peak demand reductions
PHEVs / Charging Stations	12 / 100	<ul style="list-style-type: none">• Accelerates market entry
Smart Transformers	205,983	<ul style="list-style-type: none">• Enables preventative maintenance
Automated Substations	671	<ul style="list-style-type: none">• 5% of 12,466 transmission and distribution substations in the U.S.

Contact Information

Energy Efficiency &
Renewable Energy

www.vehicles.energy.gov

Patrick Davis, Program Manager

202-586-8061

patrick.davis@ee.doe.gov

ding the Electric Vehicle Industry

Moderator: Kevin Hurst, Ph.D.

Office of Science and Technology Policy
Executive Office of the President

ber 1, 2010

idential Priorities

ct our nation from the serious economic and strategic
associated with our reliance on foreign oil and the
bilizing effects of a changing climate.

nce energy and climate security via promoting economic
ery efforts, accelerating job creation, and driving clean
ly manufacturing.

nitment to comprehensive energy-climate policies that will:
· reduce dependence on foreign oil;
· improve air & water quality;
· cut back the carbon pollution that is changing the climate;
· create new American jobs around the clean, domestic energy
ources that will get all this done.

American Innovation Strategy

Invest in the building blocks of innovation

Strengthen leadership in fundamental research

Invest in STEM education

Strengthen physical infrastructure

Develop an advanced IT “ecosystem”

Compete in competitive markets to spur innovation

Support capital markets that fund innovation

Encourage innovation-based entrepreneurship

Invest in public-sector & community innovation

Invest in American exports

Identify breakthroughs for national priorities

Lead a clean-energy revolution

Support advanced-vehicle technology

Achieve breakthroughs in health IT

Investment in advanced vehicle technologies

every Act

\$8B in grants for EV technology and demonstrations.

\$500 per-vehicle tax credit for EVs and PHEVs.

\$5B for Smart Grid infrastructure.

for the Advanced Technology Vehicles Manufacturing Loan Program
for the DOE Vehicle Technologies R&D Program increased by
FY2008 to FY2010.

\$3.5B Vehicle Technologies R&D (\$311M in FY 2010) is focused heavily on vehicle electrification initiatives.

4-E: Batteries for Electrical Energy Storage in Transportation

CAFE standards

-Generation EV Research

Vehicle Technologies Program

research at DOE Office of Science, NSF, DOD

xE

ation Hub on Energy Storage R&D (proposed)

enges

s & challenges harness the ingenuity that lurks in individuals, schools & across society. Sponsors/organizers set an ambitious goal without pre-set means to achieve it, and pay only for results.

Administration's new challenge.gov website provides 1-stop shop for entrepreneurs looking for opportunities.

Recent Progressive Insurance / DOE Automotive X-Prize illustrates the value in this approach.

M in prizes for
r->fuel->efficient passenger
vehicles (over 100 miles per gallon of
gasoline equivalent) called forth
M+ in investments in innovation
by competitors.

Winning designs achieved up to 200

Key questions

- ✓ can US-German and US-EU collaboration help enable the technical and market success of EVs?
- ✓ important is an energy storage “revolution” (at the device-level or system-level) to the growth of the EV industry?
- ✓ which government policy tools will be most important to building the EV industry over the next five years?
- ✓ what should be the top priorities for electric utilities and State PUCs to prepare for wide-scale deployment of EVs?
- ✓ government involvement needed to accelerate technical standards and EV infrastructure?