

Multidimensional Poverty Measurement: The Way Forward?

James E. Foster

The George Washington University and OPHI

NAS Food Security Workshop

February 16, 2011

Why Multidimensional Poverty?

- Missing Dimensions
 - Just low income?
- Capability Approach
 - Conceptual framework
- Data
 - More sources
- Tools
 - Unidimensional measures into multidimensional
- Demand
 - Governments and other organizations

Hypothetical Challenge

- A government would like to create an official multidimensional poverty indicator
- Desiderata
 - It must **understandable** and easy to describe
 - It must conform to a **common sense** notion of poverty
 - It must fit the **purpose** for which it is being developed
 - It must be **technically** solid
 - It must be **operationally** viable
 - It must be easily **replicable**
- What would you advise?

Not So Hypothetical

- 2006 Mexico
 - Law: must alter official poverty methods
 - Include six other dimensions
 - education, dwelling space, dwelling services, access to food, access to health services, access to social security
- 2007 Oxford
 - Alkire and Foster “Counting and Multidimensional Poverty Measurement”
- 2009 Mexico
 - Announces official methodology

Continued Interest

- 2008 Bhutan
 - Gross National Happiness Index
- 2010 Chile
 - Major conference (May)
- 2010 London
 - Release of MPI by UNDP and OPHI (July)
- 2010 Colombia
 - Major conference (July)
- 2009-2011 Washington DC
 - World Bank (several), IDB, USAID, CGD
- 2008-2011 OPHI
 - Workshops on: Missing dimensions; Weights; Country applications; Applications to governance, quality of education, corruption, fair trade, and targeting; Robustness

Our Proposal - Overview

- Identification – Dual cutoffs
 - Deprivation cutoffs
 - Poverty cutoff
- Aggregation – Adjusted FGT
- Background papers
 - Alkire and Foster “Counting and Multidimensional Poverty Measurement” forthcoming *Journal of Public Economics*
 - Alkire and Santos “Acute Multidimensional Poverty: A new Index for Developing Countries” OPHI WP 38

Review: Unidimensional Poverty

Framework

- Sen 1976 identification and aggregation

Goal

- Poverty measure $P(\cdot)$

Variable

- income consumption or other aggregate

Identification
Aggregation

- poverty line unchanged since Rowntree
- Foster-Greer-Thorbecke 1984

see also Foster, Greer, and Thorbecke 2010

- forthcoming *Journal of Economic Inequality*

Review: Unidimensional Poverty

Example Incomes $y = (7, 3, 4, 8)$ Poverty line $z = 5$

Deprivation vector $g^0 = (0, 1, 1, 0)$

Headcount ratio $P_0 = \mu(g^0) = 2/4$

Normalized gap vector $g^1 = (0, 2/5, 1/5, 0)$

Poverty gap $= P_1 = \mu(g^1) = 3/20$

Squared gap vector $g^2 = (0, 4/25, 1/25, 0)$

FGT Measure $= P_2 = \mu(g^2) = 5/100$

Decomposable across population groups WB

Policy implications Bourguignon and Fields 1990

Multidimensional Data

Matrix of achievements for n persons in d domains

Multidimensional Data

Matrix of achievements for n persons in d domains

$$y = \begin{bmatrix} \mathbf{13.1} & \mathbf{14} & \mathbf{4} & \mathbf{1} \\ \mathbf{15.2} & \mathbf{7} & \mathbf{5} & \mathbf{0} \\ \mathbf{12.5} & \mathbf{10} & \mathbf{1} & \mathbf{0} \\ \mathbf{20} & \mathbf{11} & \mathbf{3} & \mathbf{1} \end{bmatrix}$$

Domains

Persons

Multidimensional Data

Matrix of achievements for n persons in d domains

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

$z = (13 \ 12 \ 3 \ 1)$ Cutoffs

Multidimensional Data

Matrix of achievements for n persons in d domains

$$y = \begin{bmatrix} \mathbf{13.1} & \mathbf{14} & \mathbf{4} & \mathbf{1} \\ \mathbf{15.2} & \underline{\mathbf{7}} & \mathbf{5} & \underline{\mathbf{0}} \\ \underline{\mathbf{12.5}} & \underline{\mathbf{10}} & \underline{\mathbf{1}} & \underline{\mathbf{0}} \\ \mathbf{20} & \underline{\mathbf{11}} & \mathbf{3} & \mathbf{1} \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

$z \quad (13 \quad 12 \quad 3 \quad 1) \quad \text{Cutoffs}$

These entries fall below cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$y = \begin{bmatrix} \text{Domains} \\ \hline 13.1 & 14 & 4 & 1 \\ 15.2 & \underline{7} & 5 & \underline{0} \\ \underline{12.5} & \underline{10} & \underline{1} & \underline{0} \\ 20 & \underline{11} & 3 & 1 \end{bmatrix} \quad \text{Persons}$$

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Domains

Persons

Normalized Gap Matrix

Matrix of achievements for n persons in d domains

$$y = \begin{bmatrix} \mathbf{13.1} & \mathbf{14} & \mathbf{4} & \mathbf{1} \\ \mathbf{15.2} & \underline{\mathbf{7}} & \mathbf{5} & \underline{\mathbf{0}} \\ \underline{\mathbf{12.5}} & \underline{\mathbf{10}} & \underline{\mathbf{1}} & \underline{\mathbf{0}} \\ \mathbf{20} & \underline{\mathbf{11}} & \mathbf{3} & \mathbf{1} \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

$z \quad (13 \quad 12 \quad 3 \quad 1) \quad \text{Cutoffs}$

These entries fall below cutoffs

Normalized Gap Matrix

Normalized gap = $(z_j - y_{ji})/z_j$ if deprived, 0 if not deprived

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \\ \text{Cutoffs} \end{matrix}$$

$z \quad (13 \quad 12 \quad 3 \quad 1)$

These entries fall below cutoffs

Normalized Gap Matrix

Normalized gap = $(z_j - y_{ji})/z_j$ if deprived, 0 if not deprived

$$g^1 = \begin{bmatrix} & & \text{Domains} & \\ & 0 & 0 & 0 & 0 \\ & 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0.08 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Squared Gap Matrix

Squared gap = $[(z_j - y_{ji})/z_j]^2$ if deprived, 0 if not deprived

$$g^1 = \begin{bmatrix} & \text{Domains} & & \\ & 0 & 0 & 0 & 0 \\ & 0 & 0.42 & 0 & 1 \\ & 0.04 & 0.17 & 0.67 & 1 \\ & 0 & 0.08 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Squared Gap Matrix

Squared gap = $[(z_j - y_{ji})/z_j]^2$ if deprived, 0 if not deprived

$$g^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.176 & 0 & 1 \\ 0.002 & 0.029 & 0.449 & 1 \\ 0 & 0.006 & 0 & 0 \end{bmatrix}$$

Domains

Persons

Identification

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Domains

Persons

Matrix of deprivations

Identification – Counting Deprivations

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad c$$

Identification – Counting Deprivations

Q/ Who is poor?

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad c$$

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \geq 1$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \\ c \end{matrix}$$

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \geq 1$

	Domains				c	
	0	0	0	0	0	
	0	1	0	1	2	Persons
	1	1	1	1	4	
	0	1	0	0	1	

Difficulties

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \geq 1$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \end{matrix}$$

Difficulties

Single deprivation may be due to something other than poverty
(UNICEF)

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \geq 1$

	Domains				c	
	0	0	0	0	0	
	0	1	0	1	2	Persons
	1	1	1	1	4	
	0	1	0	0	1	

Difficulties

Single deprivation may be due to something other than poverty
(UNICEF)

Union approach often predicts *very* high numbers - political constraints

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \\ c \end{matrix}$$

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{4} \end{matrix}$$

Difficulties

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \\ \text{Persons} \end{matrix}$$

Difficulties

Demanding requirement (especially if d large)

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \\ \text{Persons} \end{matrix}$$

Difficulties

Demanding requirement (especially if d large)

Often identifies a very narrow slice of population

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k , identify as poor if $c_i \geq k$

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \end{matrix}$$

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k , identify as poor if $c_i \geq k$ (Ex: $k = 2$)

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \end{matrix}$$

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k , identify as poor if $\mathbf{c}_i \geq k$ (Ex: $k = 2$)

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \\ 1 \end{matrix}$$

Note

Includes both union and intersection

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k , identify as poor if $\mathbf{c}_i \geq k$ (Ex: $k = 2$)

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad \begin{matrix} c \\ \underline{2} \\ \underline{4} \\ 1 \end{matrix}$$

Note

Includes both union and intersection

Especially useful when number of dimensions is large

Union becomes too large, intersection too small

Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k , identify as poor if $\mathbf{c}_i \geq k$ (Ex: $k = 2$)

$$\mathbf{g}^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad \begin{matrix} c \\ \underline{2} \\ \underline{4} \\ 1 \end{matrix}$$

Note

Includes both union and intersection

Especially useful when number of dimensions is large

Union becomes too large, intersection too small

Next step - *aggregate* into an overall measure of poverty

Aggregation

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad c$$

Aggregation

Censor data of nonpoor

$$g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix} \quad c$$

Aggregation

Censor data of nonpoor

$$g^0(k) = \begin{array}{c|cccc|c} & \text{Domains} & & & & c(k) \\ \hline & 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 0 & 1 & \underline{2} \\ & 1 & 1 & 1 & 1 & \underline{4} \\ & 0 & 0 & 0 & 0 & 0 \end{array} \quad \text{Persons}$$

Aggregation

Censor data of nonpoor

$$g^0(k) = \begin{array}{c} \text{Domains} \quad \quad \quad c(k) \\ \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right] \quad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \end{array} \quad \text{Persons}$$

Similarly for $g^1(k)$, etc

Aggregation – Headcount Ratio

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c(k) \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \end{matrix}$$

Aggregation – Headcount Ratio

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c(k) \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \end{matrix}$$

Two poor persons out of four: $\mathbf{H} = \frac{1}{2}$ ‘incidence’

Critique

Suppose the number of deprivations rises for person 2

$$g^0(k) = \begin{array}{c|ccccc} & \text{Domains} & & & c(k) \\ \hline & 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 0 & 1 & \underline{2} \\ & 1 & 1 & 1 & 1 & \underline{4} \\ & 0 & 0 & 0 & 0 & 0 \end{array} \quad \text{Persons}$$

Two poor persons out of four: $\mathbf{H} = \frac{1}{2}$ ‘incidence’

Critique

Suppose the number of deprivations rises for person 2

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \underline{1} & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c(k) \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \\ 0 \end{matrix}$$

Two poor persons out of four: $\mathbf{H} = \frac{1}{2}$ ‘incidence’

Critique

Suppose the number of deprivations rises for person 2

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \underline{1} & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c(k) \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{2} \\ \underline{4} \\ 0 \end{matrix}$$

Two poor persons out of four: $\mathbf{H} = \frac{1}{2}$ ‘incidence’

No change!

Critique

Suppose the number of deprivations rises for person 2

$$g^0(k) = \begin{array}{c|cccc|c} & \text{Domains} & & & & c(k) \\ \hline & 0 & 0 & 0 & 0 & 0 \\ & \underline{1} & 1 & 0 & 1 & \underline{2} \\ & 1 & 1 & 1 & 1 & \underline{4} \\ & 0 & 0 & 0 & 0 & 0 \end{array} \quad \text{Persons}$$

Two poor persons out of four: $\mathbf{H} = \frac{1}{2}$ ‘incidence’

No change!

Violates ‘dimensional monotonicity’

Aggregation

Return to the original matrix

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \underline{1} & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ c(k) \end{matrix} \quad \begin{matrix} \text{Persons} \\ \underline{0} \\ \underline{2} \\ \underline{4} \\ 0 \end{matrix}$$

Aggregation

Return to the original matrix

$$g^0(k) = \begin{array}{c|ccccc} & \text{Domains} & & & & c(k) \\ \hline & 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 0 & 1 & \underline{2} \\ & 1 & 1 & 1 & 1 & \underline{4} \\ & 0 & 0 & 0 & 0 & 0 \end{array} \quad \text{Persons}$$

Aggregation

Need to augment information

$$g^0(k) = \begin{array}{c|ccccc} & \text{Domains} & & & & c(k) \\ \hline & 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 0 & 1 & \underline{2} \\ & 1 & 1 & 1 & 1 & \underline{4} \\ & 0 & 0 & 0 & 0 & 0 \end{array} \quad \text{Persons}$$

Aggregation

Need to augment information

“deprivation share”

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \text{Domains} \\ \text{Persons} \end{array} \quad \begin{array}{c} c(k) \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \quad \begin{array}{c} c(k)/d \\ 2/4 \\ 4/4 \end{array}$$

Aggregation

Need to augment information

‘deprivation share’

‘intensity’

Domains	$c(k)$	$c(k)/d$	Persons
$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	0	2	
	4	$4/4$	
	0		

$A = \text{average intensity among poor} = 3/4$

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA$

	Domains					
					$c(k)$	$c(k)/d$
$g^0(k) =$	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$					
					0	
					$\underline{2}$	$2/4$
					$\underline{4}$	$4/4$
					0	

Persons

$A = \text{average intensity among poor} = 3/4$

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k))$

	Domains				$c(k)$	$c(k)/d$	
$g^0(k) =$	0	0	0	0	0		
	0	1	0	1	<u>2</u>	<u>2 / 4</u>	Persons
	1	1	1	1	<u>4</u>	<u>4 / 4</u>	
	0	0	0	0	0		

$A = \text{average intensity among poor} = 3/4$

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k)) = 6/16 = .375$

	Domains				$c(k)$	$c(k)/d$	
	0	0	0	0	0		
	0	1	0	1	<u>2</u>	<u>2 / 4</u>	Persons
	1	1	1	1	<u>4</u>	<u>4 / 4</u>	
	0	0	0	0	0		

$$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$A = \text{average intensity among poor} = 3/4$

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k)) = 6/16 = .375$

	Domains					
	0	0	0	0	0	Persons
	0	1	0	1	<u>2</u>	<u>2 / 4</u>
	1	1	1	1	<u>4</u>	<u>4 / 4</u>
	0	0	0	0	0	

$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$A = \text{average intensity among poor} = 3/4$

Note: if person 2 has an additional deprivation, M_0 rises

Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k)) = 6/16 = .375$

	Domains					
					$c(k)$	$c(k)/d$
$g^0(k) =$	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$				0	
					<u>2</u>	$2/4$
					<u>4</u>	$4/4$
					0	

Persons

$A = \text{average intensity among poor} = 3/4$

Note: if person 2 has an additional deprivation, M_0 rises
Satisfies dimensional monotonicity

Aggregation – Adjusted Headcount Ratio

Observations

Aggregation – Adjusted Headcount Ratio

Observations

Uses **ordinal** data

Aggregation – Adjusted Headcount Ratio

Observations

Uses **ordinal** data

Similar to traditional **gap** $P_1 = HI$

$HI =$ per capita poverty gap

= headcount H times average income gap I among poor

Aggregation – Adjusted Headcount Ratio

Observations

Uses **ordinal** data

Similar to traditional **gap** $P_1 = HI$

$HI =$ per capita poverty gap

= headcount H times average income gap I among poor

$HA =$ per capita deprivation

= headcount H times average intensity A among poor

Aggregation – Adjusted Headcount Ratio

Observations

Uses **ordinal** data

Similar to traditional **gap** $P_1 = HI$

$HI =$ per capita poverty gap

= headcount H times average income gap I among poor

$HA =$ per capita deprivation

= headcount H times average intensity A among poor

Decomposable across **dimensions** after identification

$$M_0 = \sum_j H_j/d$$

Aggregation – Adjusted Headcount Ratio

Observations

Uses **ordinal** data

Similar to traditional **gap** $P_1 = HI$

$HI =$ per capita poverty gap

= headcount H times average income gap I among poor

$HA =$ per capita deprivation

= headcount H times average intensity A among poor

Decomposable across **dimensions**

$$M_0 = \sum_j H_j/d$$

Axioms - *Characterization via freedom*

Adjusted Headcount Ratio

Note

M_0 requires only ordinal information.

Q/

What if data are cardinal?

How to incorporate information on *depth* of deprivation?

Aggregation: Adjusted Poverty Gap

Augment information of M_0 using normalized gaps

$$g^1(k) = \begin{bmatrix} & & & \text{Domains} \\ & 0 & 0 & 0 \\ & 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ & 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Aggregation: Adjusted Poverty Gap

Augment information of M_0 using normalized gaps

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{0.42} & 0 & 1 \\ \mathbf{0.04} & \mathbf{0.17} & \mathbf{0.67} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{matrix} \text{Domains} \\ \\ \\ \text{Persons} \end{matrix}$$

Average gap across all deprived dimensions of the poor:

$$G = (0.04 + 0.42 + 0.17 + 0.67 + 1 + 1) / 6$$

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = $M_1 = M_0G = HAG$

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{0.42} & 0 & 1 \\ \mathbf{0.04} & \mathbf{0.17} & \mathbf{0.67} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

Average **gap** across all deprived dimensions of the poor:

$$G = (0.04 + 0.42 + 0.17 + 0.67 + 1 + 1) / 6$$

Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = $M_1 = M_0G = HAG = \mu(g^1(k))$

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{0.42} & 0 & 1 \\ \mathbf{0.04} & \mathbf{0.17} & \mathbf{0.67} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

Average **gap** across all deprived dimensions of the poor:

$$G = (0.04 + 0.42 + 0.17 + 0.67 + 1 + 1) / 6$$

Aggregation: Adjusted Poverty Gap

$$\text{Adjusted Poverty Gap} = M_1 = M_0 G = \text{HAG} = \mu(g^1(k))$$

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{0.42} & 0 & 1 \\ \mathbf{0.04} & \mathbf{0.17} & \mathbf{0.67} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_1 will rise.

Aggregation: Adjusted Poverty Gap

$$\text{Adjusted Poverty Gap} = M_1 = M_0 G = \text{HAG} = \mu(g^1(k))$$

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_1 will rise.

Satisfies monotonicity – reflects incidence, intensity, depth

Aggregation: Adjusted FGT

Consider the matrix of squared gaps

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \mathbf{0.42} & 0 & 1 \\ \mathbf{0.04} & \mathbf{0.17} & \mathbf{0.67} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \text{Domains} \\ \text{Persons} \end{matrix}$$

Aggregation: Adjusted FGT

Consider the matrix of squared gaps

Domains

$$g^2(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^2 & 0 & 1^2 \\ 0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = \mu(g^2(k))$

Domains

$$g^2(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^2 & 0 & 1^2 \\ 0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = \mu(g^2(k))$

Domains

$$g^2(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^2 & 0 & 1^2 \\ 0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{Persons}$$

Satisfies transfer axiom

- reflects incidence, intensity, depth, severity
- focuses on most deprived

Aggregation: Adjusted FGT Family

Adjusted FGT is $M_\alpha = \mu(g^\alpha(\tau))$ for $\alpha \geq 0$

$$g^\alpha(k) = \begin{bmatrix} & & & \\ & 0 & 0 & 0 & 0 \\ & 0 & 0.42^\alpha & 0 & 1^\alpha \\ 0.04^\alpha & 0.17^\alpha & 0.67^\alpha & 1^\alpha \\ & 0 & 0 & 0 & 0 \end{bmatrix}$$

Domains

Persons

Aggregation: Adjusted FGT Family

Adjusted FGT is $M_\alpha = \mu(g^\alpha(\tau))$ for $\alpha \geq 0$

Domains

$$g^\alpha(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^\alpha & 0 & 1^\alpha \\ 0.04^\alpha & 0.17^\alpha & 0.67^\alpha & 1^\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Satisfies numerous properties including decomposability, and dimension monotonicity, monotonicity (for $\alpha > 0$), transfer (for $\alpha > 1$).

Weights

Weighted identification

Weight on first dimension (say income): 2

Weight on other three dimensions: 2/3

Cutoff $k = 2$

Poor if income poor, or suffer two or more deprivations

Cutoff $k = 2.5$ (or make inequality strict)

Poor if income poor and suffer one or more other deprivations

Nolan, Brian and Christopher T. Whelan, Resources,
Deprivation and Poverty, 1996

Weighted aggregation

Weighted intensity – otherwise same

Caveats and Observations

Identification

No tradeoffs across dimensions

Fundamentally multidimensional

- Need to set deprivation cutoffs

- Need to set weights

- Need to set poverty cutoff across dimension

Aggregation

Neutral

- Ignores coupling of disadvantages

- Not substitutes, not complements

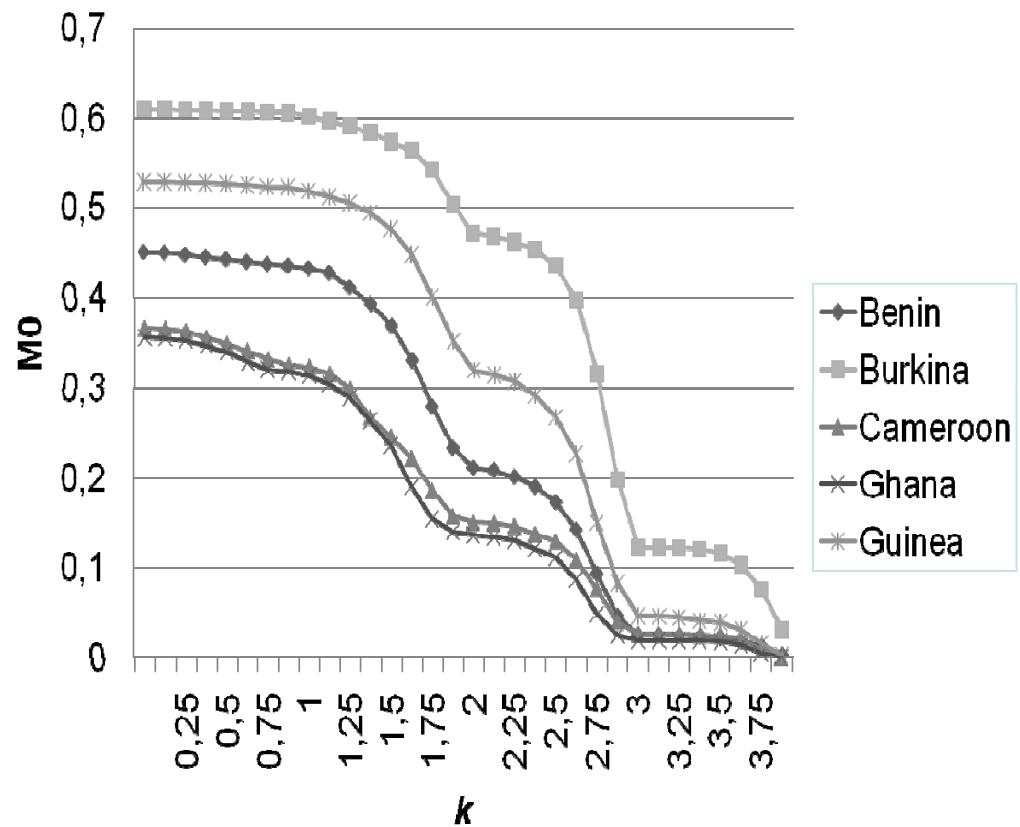
Discontinuities

Sub-Saharan Africa: Robustness Across k

Burkina is *always* poorer than Guinea, regardless of whether we count as poor persons who are deprived in only *one* kind of assets (0.25) or *every* dimension (assets, health, education, and empowerment, in this example). (DHS Data used)

Batana, 2008- OPHI WP 13

Figure 3: M_0 as cutoff k is varied in the five countries



Advantages

Intuitive

Transparent

Flexible

MPI – Acute poverty

Country Specific Measures

Policy impact and good governance

Targeting

Accounting structure for evaluating policies

Participatory tool

Revisit Objectives

- Desiderata
 - It must **understandable** and easy to describe
 - It must conform to a **common sense** notion of poverty
 - It must fit the **purpose** for which it is being developed
 - It must be **technically** solid
 - It must be **operationally** viable
 - It must be easily **replicable**
- What do you think?

Thank you

Thank you

Illustration: USA

Data Source: National Health Interview Survey, 2004, *United States Department of Health and Human Services. National Center for Health Statistics* - ICPSR 4349.

Tables Generated By: Suman Seth.

Unit of Analysis: Individual.

Number of Observations: 46009.

Variables:

- (1) *income* measured in poverty line increments and grouped into 15 categories
- (2) self-reported *health*
- (3) health *insurance*
- (4) years of *schooling*.

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1	2	3
Group	Population	Percentage Contrib.
Hispanic	9100	19.8%
White	29184	63.6%
African American	5742	12.5%
Others	1858	4.1%
Total	45884	100.0%

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1 Group	2 Population	3 Percentage Contrib.	4 Income Poverty Headcount	5 Percentage Contrib.
Hispanic	9100	19.8%	0.23	37.5%
White	29184	63.6%	0.07	39.1%
African American	5742	12.5%	0.19	20.0%
Others	1858	4.1%	0.10	3.5%
Total	45884	100.0%	0.12	100.0%

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1 Group	4 Income Poverty Headcount	5 Percentage Contrib.
Hispanic	0.23	37.5%
White	0.07	39.1%
African American	0.19	20.0%
Others	0.10	3.5%
Total	0.12	100.0%

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1 Group	4 Income Poverty Headcount	5 Percentage Contrib.	6 H	7 Percentage Contrib.
Hispanic	0.23	37.5%	0.39	46.6%
White	0.07	39.1%	0.09	34.4%
African American	0.19	20.0%	0.21	16.0%
Others	0.10	3.5%	0.12	3.0%
Total	0.12	100.0%	0.16	100.0%

Illustration: USA

Profile of US Poverty by Ethnic/Racial Group

1 Group	4 Income Poverty Headcount	5 Percentage Contrib.	8 M_θ	9 Percentage Contrib.
Hispanic	0.23	37.5%	0.229	47.8%
White	0.07	39.1%	0.050	33.3%
African American	0.19	20.0%	0.122	16.1%
Others	0.10	3.5%	0.067	2.8%
Total	0.12	100.0%	0.09	100.0%

Illustration: USA

1	2	3	4	5	6
Ethnicity	H_1 <i>Income</i>	H_2 <i>Health</i>	H_3 <i>H. Insurance</i>	H_4 <i>Schooling</i>	M_0
Hispanic	0.200	0.116	0.274	0.324	0.229
<i>Percentage Contribution</i>	21.8%	12.7%	30.0%	35.5%	100%
White	0.045	0.053	0.043	0.057	0.050
<i>Percentage Contribution</i>	22.9%	26.9%	21.5%	28.7%	100%
Black	0.142	0.112	0.095	0.138	0.122
<i>Percentage Contribution</i>	29.1%	23.0%	19.5%	28.4%	100%
Others	0.065	0.053	0.071	0.078	0.067
<i>Percentage Contribution</i>	24.2%	20.0%	26.5%	29.3%	100%