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Fig. 1.

An integrative model outperforms every one of its component obesity-related experiments.

A. Receiver-operating characteristic curves are plotted for each of 49 obesity-related

experiments and by experimental modality. An integrative model, considering genes by the

number of obesity-related experiments in which they were positive, is shown in black. Each

point on this curve indicates a different threshold number of positive experiments. Model error

bars were constructed using 100 trials of 10-fold cross-validation, and indicate ± 1 standard

deviation. B. Violin-plot showing the distribution of areas under the ROC curves for 100 cross-

validated trials of the integrative model and the 49 individual obesity-related experiments.

Significance was assessed using the Wilcoxon rank sum test. White dot indicates median, box
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More Data Wins

English S and Butte AJ. “Evaluation and Integration of 49 Genome-wide Experiments and the Prediction 
of Previously Unknown Obesity-related Genes.” Bioinformatics  (2007) vol. 23 (21) pp. 291







RNA expression detection 
chips 

Schena M, et al. PNAS 93:10614 (1996). 
Nature Genetics, 21: supplement (Jan 1999). 
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•  Genome-wide, quantitative 
•  Commodity items 
•  International repositories of 

data 



Butte AJ, Chen R "Finding disease-related genomic experiments within an international 
repository: first steps in translational bioinformatics." AMIA Annu Symp Proc 2006; 106-10
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Non-hodgkin lymphoma

Hodgkin’s Sarcoma
SNOMED-CT (C0019829)

UMLS

Non-Hodgkin’s Lymphoma
SNOMED-CT (C0024305)

Dudley J and Butte AJ. Enabling integrative genomic analysis of high-impact human 
diseases through text mining. Pacific Symposium on Biocomputing (2008) pp. 580-91



AILUN: 
Extracting GEO 
gene lists 
•  GEO has 12.6+ billion 

measurements across  
~4000 platforms 

•  Decoding measured gene 
is a challenge 
–  Varied use of identifiers 
–  Identifiers change 

meaning 
•  We have ~100 million 

mappings to NCBI Gene 
ids 

•  We mapped 67% of GEO 
platforms to NCBI 
identifiers 

Gene Identifier Gene Identifier Vocabulary 
AI262683 GenBank 
NM_000015 GenBank 
Hs.2 UniGene 
NP_000006 Protein 
P11245 Protein 
NAT2 NCBI Gene official symbols 
AAC2 NCBI Gene all symbols 
IMAGE:1870937 IMAGE clone 
UI-H-FG1-bgl-

g-02-0-UI University of Iowa clone 

IMAGp998I18458
1_ 

Institute of Molecular Biology 
and Genetics Ukraine 
clone 

10286060 GenBank GI 
TC110817 OriGene Technologies Clone 
HIE06837r Gunma University Clone 
CMPD10049 University of Padova Clone 

3NHC3746 Institute of Medical Science 
Japan Clone 

Human N-acetyltransferase 2  

Chen R, Butte AJ. Nature 
Methods, November 2007. 



Dudley et al. Disease signatures are robust across tissues and experiments. Molecular 
systems biology (2009) vol. 5 pp. 307

What is the quality of the 
public gene expression 

data?



~300 Diseases 
and Conditions

20k+ Genes

Blue: gene goes 
down in disease
Yellow: gene goes 
up in disease

Human Disease Gene Expression 
Collection

Butte AJ, Kohane IS. Nature Biotechnology, 2006, 24:55.
Butte AJ, Chen R. Proc AMIA Fall Symposium, 2006.
Chen R, Butte AJ. Nature Methods, 2007.



Figure 2. Significant disease-disease similarities. (A) Hierarchical clustering of the disease correlations. The distance between two diseases was
defined to be (1-correlation coefficient) of the two diseases. The tree was constructed using the average method of hierarchical clustering. The red
line corresponds to a p-value of 0.01 and FDR of 10.37% and, disease correlations below this line are considered significant. The different colors
represent the various categories of significant disease correlations. (B) The network of all the 138 significant disease correlations. The colors
correspond to significant disease correlation categories in (A). The nodes colored in grey are not marked in (A).
doi:10.1371/journal.pcbi.1000662.g002

Network-Based Elucidation of Disease Relationships

PLoS Computational Biology | www.ploscompbiol.org 4 February 2010 | Volume 6 | Issue 2 | e1000662

Suthram S, Dudley J et al. Network-based elucidation of human disease similarities reveals common 
functional modules enriched for pluripotent drug targets. PLoS Computational Biology (2010) vol. 6 (2) 



Mining Public Data for Drug Repositioning

Dudley JT, Sirota M et al. Discovery and validation of drug indications using compendia of 
public gene expression data (in revision)
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Three of the ten proteins were statistically significantly upregu-
lated in the AR serum samples compared to the STA samples after
renal transplantation (Fig. 3). They were PECAM1 (also known as
CD31 antigen, or platelet/endothelial cell adhesion molecule),
CXCL9 (MIG, chemokine ligand 9), and CD44 (hyaluronic acid
receptor). Mann-Whiney U test for significant differences yielded p-
values of 161023, 161024, and 561023, respectively. Receiver
Operating Characteristics (ROC) curves showed the ability of each
individual protein to distinguish AR from STA (Fig. 3d). The areas
under the ROC curves (AUC) were 0.811, 0.864, and 0.761 for
PECAM1, CXCL9, and CD44, respectively. At optimal perfor-
mance, PECAM1 distinguished AR from STA with 89% sensitivity
and 75% specificity; CXCL9: 78% sensitivity and 80% specificity;
CD44: 80% sensitivity and 75% specificity.
We then measured the concentration of these proteins in a

second pilot study on plasma samples of cardiac allograft recipients
to identify cross-organ AR biomarkers. We compared samples
from 32 AR patients and 31 STA patients. The samples were
matched for demographic characteristics (Table S4). None of them
was infected with CMV. Interestingly, all three markers were

upregulated in AR compared to STA. Mann-Whitney U test for
significant differences yielded p values of 361023 (PECAM1),
0.019 (CXCL9), and 461023 (CD44) (Fig. 4). The areas under the
ROC curves for distinguishing AR from STA were 0.716, 0.672,
and 0.711 for PECAM1, CXCL9, and CD44, respectively.
We evaluated the performance of a combined panel of

PECAM1 and CXCL9 using a three-fold cross-validation. We
randomly selected two thirds of the samples, trained a multinomial
logistic regression model, and calculated the predictive perfor-
mance on the remaining one third of samples. After repeating the
process 1000 times, the average ROC curves showed an
improvement on cardiac AR diagnosis and no additional
improvement on renal AR diagnosis (Fig. S3), suggesting a large
clinical trial combining PECAM1 and CXCL9 with other
previously found protein biomarkers would be needed to evaluate
the predictive diagnosis of AR. Adding CD44 did not improve the
regression models.
We performed an immunohistochemistry study on our best-

performing marker, PECAM1. The goal of the study was to
compare its protein expression in AR and STA samples from

Figure 2. Identification of cross-organ AR protein biomarkers through integration of gene expression data. We integrated three
microarray studies examining gene expression after rejection in the biopsy samples from pediatric renal, adult renal, and adult heart transplants (the
latter two were retrieved from GEO). We identified 45 genes that were upregulated in common in acute rejection compared to stable graft function.
Among ten proteins we tested by ELISA, the concentrations of three were higher in serum samples from AR patients. The concentrations of the same
three proteins were also higher in AR samples from cardiac transplantation. Immunohistochemistry showed that PECAM1 was increased in AR vs.
stable biopsies in renal, hepatic and cardiac transplantation. All three biomarkers were from our identified AR pathway, and two of them showed
detectable protein abundance in the biofluid proteome database we constructed before. CXCL9 was not listed in our biofluid proteome database,
but is known to have detectable protein abundance [24].
doi:10.1371/journal.pcbi.1000940.g002

Microarray Data Yields Serum Protein Biomarkers

PLoS Computational Biology | www.ploscompbiol.org 5 September 2010 | Volume 6 | Issue 9 | e1000940

Chen R et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers 
for cross-organ transplant rejection and other conditions.. PLoS Computational Biology (2010) e1000940

Discovery of peripheral biomarkers for transplant 
rejection through integration of public data

http://www.ncbi.nlm.nih.gov/pubmed/20885780
http://www.ncbi.nlm.nih.gov/pubmed/20885780
http://www.ncbi.nlm.nih.gov/pubmed/20885780
http://www.ncbi.nlm.nih.gov/pubmed/20885780


diseases. We have demonstrated that this approach could be used
to suggest candidate protein biomarkers for 22 diseases, and have
shown the enrichment of known clinically and pre-clinically
validated protein biomarkers in these candidate biomarkers. We
applied our method to new and publicly-available microarray
measurements on solid-organ transplantation, and identified and
validated three cross-organ serum protein biomarkers for trans-
plant rejection. Our results demonstrate that the integration of

gene expression microarray measurements from disease samples,
and even publicly-available data sets, can be a powerful, fast, and
cost-effective strategy for discovering diagnostic serum protein
biomarkers.
We found that PECAM1, CXCL9 and CD44 proteins were

significantly upregulated in the serum/plasma samples of both
renal and heart transplant patients with acute rejection compared
with patients with stable graft function. The abundance of CXCL9

Figure 5. In situ PECAM1 staining in acute rejection and stable patients in renal, hepatic, and cardiac allograft biopsies. (A) Acute
rejection in a renal allograft biopsy with PECAM1 positive infiltrating lymphocytes and monocytes; endothelial cell staining occurred in glomeruli and
peritubular capillaries. (B) In a stable graft renal allograft biopsy, PECAM1 staining occurred only in endothelial cells in glomeruli and peritubular
capillaries. (C, E) Dense staining was observed in AR tissues after hepatic (C) and cardiac (E) transplants in infiltrating mononuclear cells and
endothelial cells of capillaries and larger blood vessels. In hepatic (D) and cardiac (F) transplant biopsies from stable grafts, weak endothelial cell
staining was observed (magnification 6400).
doi:10.1371/journal.pcbi.1000940.g005

Microarray Data Yields Serum Protein Biomarkers

PLoS Computational Biology | www.ploscompbiol.org 8 September 2010 | Volume 6 | Issue 9 | e1000940



Many more examples of new medicine 
from public data

• New large-effect genetic risk variant for 
Type 2 diabetes

• New drug target for Type 2 diabetes

• Biomarker for medulloblastoma

• Biomarker for pancreatic cancer

• Biomarker for lung cancer

• Biomarker for atherosclerosis



We can do this because we have the computational 
firepower, but what about others?

Dudley et al. Translational bioinformatics in the cloud: an affordable alternative. Genome medicine 
(2010) vol. 2 (8) pp. 51



Dudley and Butte. In silico research in the era of cloud computing. Nature biotechnology (2010) 
vol. 28 (11) pp. 1181-5



Lessons learned from integrating open 
biomedical data for translational research
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• So far sticks have worked better than carrots

• Lightweight integration trumps ontology

• Computation is a major bottleneck

• Right now there are privileged computational elite

• Questions first, data second

• Data really is unreasonably effective

• New biology and medicine is possible through “data 
science”

Lessons learned from integrating open 
biomedical data for translational research
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