Farm Level Sustainable Intensification; Growing More With Less
Growing More From Less

- The world must grow more crops on the currently available land to meet the increasing demand for food, feed and fuel
 - Climate Change
 - Sustainability
- 4 Technologies have raised yields since 50’s
 - Doubled or tripled everywhere except SS Africa
 - Mechanisation, Fertilisers
 - Better crop varieties, CP Chemicals
Sustainable Intensification....

- All commentators agree that food production will have to increase substantially this century. But there are very different views about how this should best be achieved.
- Agriculture can negatively affect the environment through overuse of natural resources as inputs or as a sink for pollution.
- Sustainable agricultural intensification is defined as producing more output from the same area of land while reducing the negative environmental impacts...
- ...both agricultural and environmental outcomes are pre-eminent under sustainable intensification.
- Can’t define by the acceptability [or rejection] of any particular technology or practices, there are no blueprints.

Sustainable Intensification

- We must get beyond pointless arguments based on entrenched beliefs or narrow debates about individual technologies
- Focus on desired outcomes
- Practical matter not an academic exercise
- There is no magic solution
- Sustainability is a journey, not the destination
- Solutions must work locally for individual farmers and communities

- Yield Gap? Best yields are typically 2-3x higher than low yields
 - Sometimes on adjacent farms
 - Technology, Knowhow
“No Silver Bullet”, complexity leads to partnerships
Sustainable Intensification reduces pressure for land use change
Food security: better food systems using fewer resources

- Sustainable production system
 - recognizes connections between technology, land and people
- Limitation: availability of natural resources
- Improved access and distribution through enabling policies
Grow More With Less

- We can meet the challenge of sustainably feeding 9 billion people using less natural resource and improve the economic resilience of smallholders
- Approaches that work for farmers in their local situation
- Technology is just one of the critical components of solutions
- Governments, international agencies, NGO’s, Universities, Research institutes, Private sector companies and Farmers
- Joined up thinking needs partnerships – everyone playing their part
- Be assured that Syngenta will play our part in developing great technology solutions that offer practical benefits to farmers worldwide
Translating Scientific Information into Knowledge

From gene data across technologies and crops....

- Corn
- Wheat
- Sorghum
- Soybean
- Tomato
- Pepper
- Cassava
- Poplar
- Melon

- Stress Tolerance
- Yield
- Flowering
- Fruit and petal color
- Taste
- Disease resistance
- Nutrient efficiency
- Insect Resistance

....to trait and marker knowledge within crops
Modern approaches to design

- Protein X-ray crystallography and modelling
IZM 0.75 + Proline 0.4 fb IZM 0.75 + Proline 0.4

13.60 t/ha

+5.1 t/ha
Safety all around

Protection of employees

Operator safety

Toxicology

Food

People

Environment

Environment
Integrating technologies for customer benefit

Innovative crop protection chemistry and Seed Care

Agronomic expertise

Precision breeding and plant genomics
Development of integrated solutions

Pest (IPM)
- Threshold Concepts
- Beneficials Management
- Traps, Pheromones
- Resistance Management

Crop (ICM)
- Programs
- Alternative Solutions
- Residue Minimization
- Seed Care
- Product Stewardship
- Forecast Models
- Alert Systems

Field / Farm
- Field Margins
- Pollinator Habitat
- Application Technology
- Farm Stewardship
- C / N Footprint

Landscape
- Refuge Management
- Biodiversity Concepts
- Water Protection
- Land Use Concepts
Soybean Efficiency Indicators (Per Unit of Output, Index 2000 = 1)

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Use</td>
<td>0.044</td>
<td>Million Btu/bushel</td>
</tr>
<tr>
<td>Soil Loss</td>
<td>101.0</td>
<td>Pounds soil/bushel</td>
</tr>
<tr>
<td>Irrigation Water Use</td>
<td>19.4</td>
<td>Thousand gallons/Incremental bushel due to irrigation</td>
</tr>
<tr>
<td>Net Carbon Emissions</td>
<td>2.2</td>
<td>Pounds Carbon/bushel</td>
</tr>
<tr>
<td>Land</td>
<td>0.026</td>
<td>Acres/bushel</td>
</tr>
</tbody>
</table>

(Values are expressed as 5-year centered averages.)
Integrated Solutions: Brief case studies

- Water stress
- Water Quality
- Farm management through spatial planning
- Biodiversity on farm
- Sugar Cane productivity
- Rice yield and quality
Areas of physical and economic water scarcity

Source: IWM report. Insights from the Comprehensive Assessment of Water Management in Agriculture, 2006 / p8
Crop Enhancement Chemicals for Water Efficiency

- Programme containing Growth regulator “Moddus” in Wheat
- Yield +15-25%; Reduced irrigation - Water savings 15%
- “Crop per Drop” improvement ca 35%
Seed Treatment – Chemicals Complementing Genetics

Abiotic stresses are responsible for more than 50% yield reduction. Thiamethoxam shown to activate proteins that protect against stress.

Stress: drought, heat, salinity, UV light, nutrient deficiency etc.
Water optimization: Combining GM and non-GM technology

- Drought during pollination leads to poor kernel set
- New technology can protect during drought conditions
- Multiple complementary approaches to new seed varieties: native trait and functional genomics, transgenics
- New trait constructs are currently under evaluation in field trials
- 1st Launch drought tolerant corn, Agrisure Artesian™ US 2011
Agronomic practices for Water Conservation

- Useful in water dependent crops like rice...
 - Drip Irrigation
- Pani-Pipe project Bangladesh (50,000 units)
- 46% reduction in water use; 23% cost reduction
- 4-5% yield gain; 27% farmer profit increase
Using High Resolution GIS for identifying Regional and within field scale potential runoff vulnerability
Characterizing Co-Occurrence of Shallow Impervious Soils with Other Factors across USA

- Best Available Data for
 - Soil, Slope, and Crop
- SSURGO (USDA)
 - Depth to impervious layer
- 30m DEM (from NHDPlus)
 - 10 m grid processing
- Landuse (USDA)
 - Best available reclassed from CDL or NLCD
- Selecting Criteria
 - ≥ 2% slope - Practical hydrology
 - ≤ 30 cm depth to impervious layer (K_{sat} <1.25 micron/s)

77.8 Billion 10m grid points examined nationwide!
Assessing Co-occurrence of Vulnerable Conditions

≤ 30 cm Depth Impervious Alone

≤ 30 cm Depth Impervious AND slope ≥ 2%

≤ 30 cm Depth Impervious AND slope ≥ 2% AND any cultivated crop*

Spatial imaging and modelling - Remarkable potential resource for effective land use planning and management?

“Any cultivated crop” includes soybeans, wheat, cotton, vegetables plus corn and sorghum
Identifying watersheds which have relatively high co-occurrence of these conditions
Fields Ranked by Potential for Extreme Runoff
Water Quality – Best Management Practices
Describing the correct positioning of vegetative buffer strips...

1. buffer strip inside field
2. buffer zone at the edge of a field This could be a non treated area, and a grassed strip between the field and a road
3. grassed corner of field, where water concentrates before flowing down the catchment
4. grassed pathway to reduce water flow where it concentrates
5. grassed field positioned to intercept concentrated runoff
6. grassed strip along river, to intercept diffuse runoff
Operation Pollinator:
Creating farmland habitats for high biodiversity

- **Crop**
 - Limited value plants & invertebrates
 - Simple structure & composition

- **Tussocky Grass**
 - Good for invertebrates (4X bugs & spiders) & small mammals

- **Wildflower Mix**
 - Very visual
 - Attractive to the widest range of invertebrates & butterflies (8X)

- **Pollen & Nectar Mix**
 - Best for Bumblebees & butterflies (13X)
 - Pollen & nectar abundant
A win-win-win Situation for our customers + agriculture: Fulfil environmental obligations + increase of biodiversity + enable efficient farming

What we do
- Cultivating pollen + nectar margins around fields
- Innovative pesticide use
- Develop targeted seed mix
- Best management Practice
- Train farmers + experts
- Educate society

What we achieve in short term
- Increase of Crop yield
- Simplify field management
- Environmental payment
- Increase habitat for Pollinators
- Increase Pollinator numbers

What we achieve in long term
- Increase overall biodiversity
- Create habitat for mammals and farmland birds
- Create a more sustainable farming system
- Knowledge on Pollination + Environment
- Grow more food from less land
Tailoring systems: Plene™ in sugar cane

Evolution in sugar cane planting

- Integrated solution which simplifies cane planting, offers buds treated against diseases and insects delivering a healthy crop, varietal purity and traceability

Advantages

Economic
- Reduces planting costs of 15% per ha
- Increases production of 5-15 ton/ha with faster renovation and productivity gain

Environmental
- Sustainable agriculture—min. cultivation and lower compaction
- Better carbon footprint—less machinery operations

Social
- Better work conditions – less physically stressing

Commercial launch at the end of 2010
transforming sugar cane planting in Brazil

SYNGENTA INNOVATION
- Crop Protection active ingredients and formulations
- Coating protectors
- Vigor technology
- Cutting and treatment equipment
- “Integrated Planting System”

TECHNOLOGY DEVELOPMENT
- Planting Equipments
- Treating Equipments

GERMPLASM
90% of rice is grown in APAC

2008 Rice Production = 444mmt

Source: USDA (May 2009)
Rice Integrated Solutions

- There cannot be a single solution
- Tailored approaches to meet local farmer needs and preferences
 - Rainfed, secure/erratic
 - Irrigated, depleting groundwater, water rich areas
 - Transplanted rice, Direct seeded
 - Farmer saved seed, certified seed, hybrids
- Importance of Agricultural extension services for Knowledge transfer
Hainan China November 2008
10 t/ha yield integrated solution: Chennai March 2011
Transplanting
Tanzania Irrigated rice; April 2011
Tanzania Rainfed rice; April 2011
Limitations for smallholders are not just lack of technology

- Right CP & seeds
- Agronomy
- Product stewardship
- Water, environmental management

- Investment in farm
- Credit for inputs
- Weather / production insurance

- Harvesting, storage, transport
- Purchase agreements

- Market info
- Price info
- Weather info
- Pest and disease info
Kilimo Salama: Insurance scheme (Syngenta Foundation for Sustainable Agriculture)
Grow more from less

Sustainable Intensification of Agriculture
Metrics for desired Outcomes
Focus on productivity and environmental aspects
Yield, Quality, Soil, Water, Biodiversity, Waste
Efficient use of Natural Resources

Responsible use of technology
Proportionate Regulation; risk based

Practical help for growers: Knowledge transfer
Grower training and demonstrations
Sustainable and safe farm management practices
Improving capability in local University and Extension services

Infrastructure investments and Policy
Economic and Social benefits
Integrated solutions for farmer benefit

Innovative crop protection chemistry and Seed Care

Biotechnology expertise

Precision breeding and plant genomics

Agronomy
Local Knowledge
Machinery
Fertiliser
Services
Finance