

The SBIR Commercialization Challenge

Dr. Javier de Luis
VP for Research and Development
June 21, 2011

Aurora Flight Sciences Corporation
9950 Wakeman Drive
Manassas, VA
(703) 369-3633

Aurora Flight Sciences Overview

RESEARCH & DEVELOPMENT

Develop, integrate, and fly payloads for atmospheric and space missions

ADVANCED CONCEPTS

Studies & analysis, applied research, prototype development, and technology demonstrators

TACTICAL PRODUCTS

Develop and deploy products for small teams that increase situational awareness and mission effectiveness

AEROSTRUCTURES

Provide design-build and build-to-print services to prime contractors

Recent NASA SBIRS (selected)

- Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion
- SPHERES/Universal ISS Battery Charging Station
- Mars Orbiting Sample Return External Orbiting Capture
- Small Probes for Orbital Return of Experiments
- Aspirated Compressors for High Altitude Engines
- Titan Montgolfiere Buoyancy Modulation System
- Suit Simulator (S3) for Partial Gravity EVA Experimentation and Training
- Analysis and Development of UAV Operations in the NAS

Commercialization Options

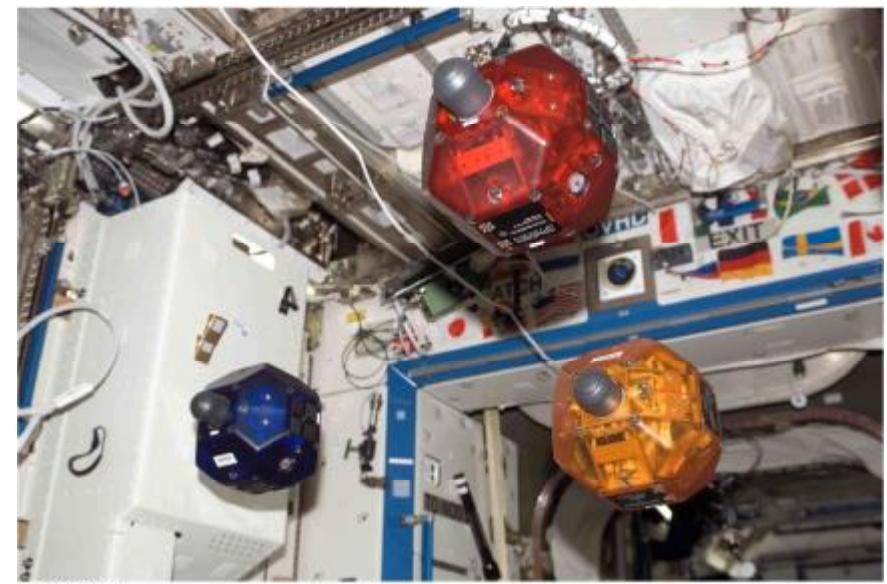
- Develop a product or service that can be sold commercially or to other government agencies
- Craft a comprehensive program from a series of SBIRs that can be used to leverage additional non-SBIR resources
- Use the SBIRs to develop skills, expertise, and other allow you to be a credible bidder for other non-SBIR programs
- Discuss each of these individually

Product or Service

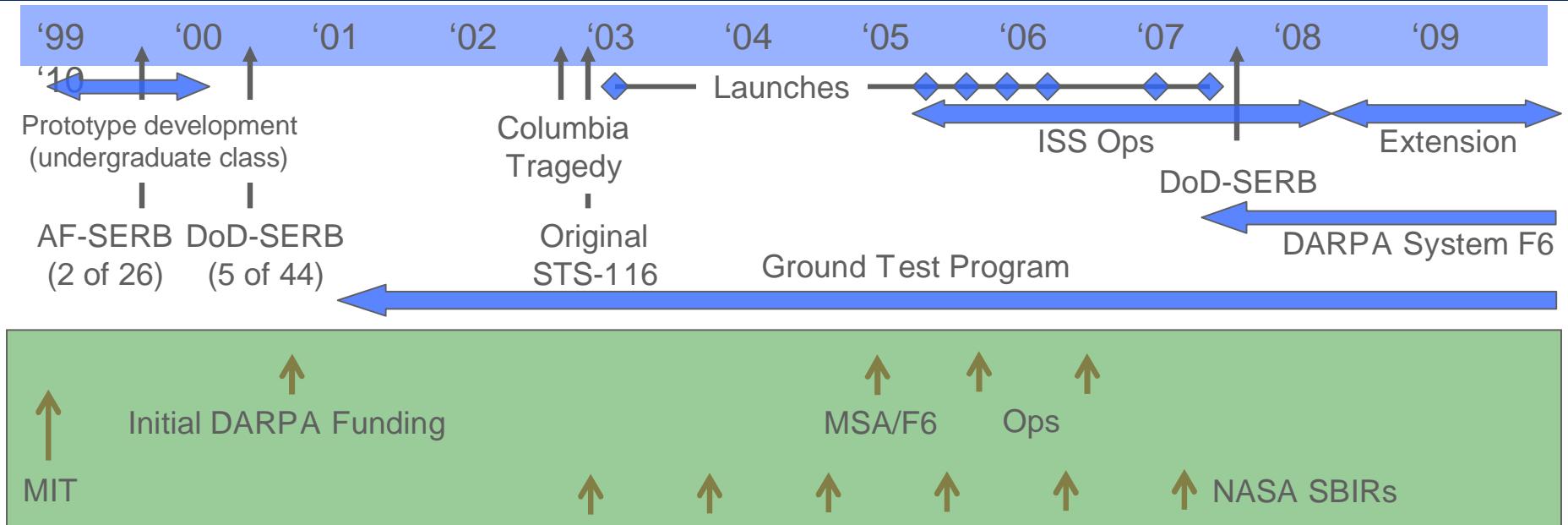
- Hardest to achieve
 - ø NASA topics often have limited commercial applications
 - ø NASA topics often ask for comprehensive programs, not specific technologies
- Even when Phase II completed successfully, you still have the Valley of Death
 - ø SBIR resources not enough to get to commercial product
 - ø Firms that are good at SBIRs are often not good at raising capital
- SBIR time frame often too slow for fast paced technologies

Examples

- General Aviation Black Box
 - ø Designed to be a stand alone data and voice recorder. Inexpensive, survivable.
 - ø Presented to NTSB, conferences
 - ø Technology moved too fast
- Swelling Hemostat (US Army)
 - ø Internal tourniquet for trauma care
 - ø Licensed to start-up
- Smart Container
 - ø Keeps track of contents automatically with RFID and reports via wifi
 - ø Follow-on work as a technology to assist aging population



Crafting a Comprehensive Program: SPHERES



Objective: to develop a reconfigurable and risk-tolerant laboratory for maturing close-proximity satellite GN&C algorithms under micro-gravity conditions

- Long duration μ -g is essential
 - ø Full 6-DOF motion (incl. quaternion slews, tumbling, nutation)
 - ø Proper contact dynamics
 - ø Key element of space environment needed for reaching higher TRL's
- Reconfigurable
 - ø Permit spiral development through reconfigurable software
 - ø Enable mission specialization through mounted payloads
- Risk-tolerant
 - ø Push technology under both nominal and off-nominal conditions
- Three nano-satellites inside US Laboratory on ISS
 - ø Cold-gas propulsion, inertial and ISS-relative sensing, expansion port, RF-communication

Programmatic History

Funding Agencies:

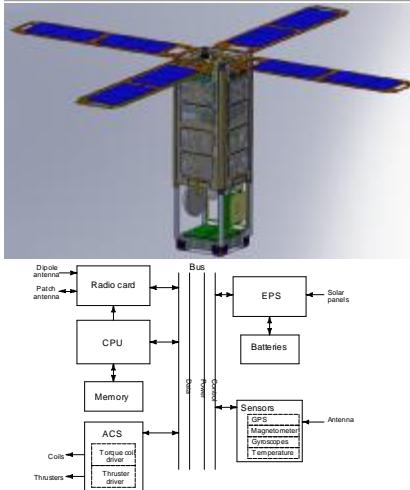
- DARPA
 - ø Baseline- Hardware fabrication and flight operations
 - ø MSA/F6 - SPHERES hardware used to develop µEMFF
- NASA
 - ø 6 SBIR awards for ground testing and flight support
 - ø MARS program development of sample return capture mechanism
 - ø Other NASA - JPL TPF, GSFC SIFFT

Operations Team:

- Aurora Flight Sciences / Payload Systems
 - ø Hardware fabrication, integration, crew training, and operations
- MIT
 - ø Ground and space testing
 - ø Guest Investigator Program
- Space Test Program
 - ø integration and mission ops support

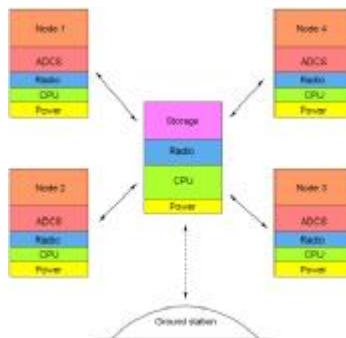
Develop Skills and Capabilities

- Spaceflight has large barriers to entry, which reduces the number of credible participants
- SBIR Phase II's not usually enough to get flight hardware, unless limited in scope
- But, parabolic flight, suborbital, and cubesat opportunities get you part of the way.

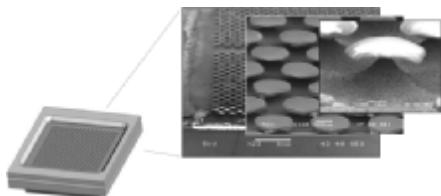

Mothercube for Cubesat-based Synthetic Aperture Radio Telescope

Expanding Cubesat capabilities through fractionation

Michael Price and Javier de Luis, Aurora Flight Sciences


The Mothercube satellite

- Functions as the hub of a Cubesat cluster
- Combined attitude control and propulsion system
 - Electrospray thrusters
 - Torque coils
 - Allows formation flying with no moving parts
- Multi-level avionics architecture supporting FPGA and DSP
- Differential GPS positioning
- Redundant radio and antenna support


Fractionated architectures

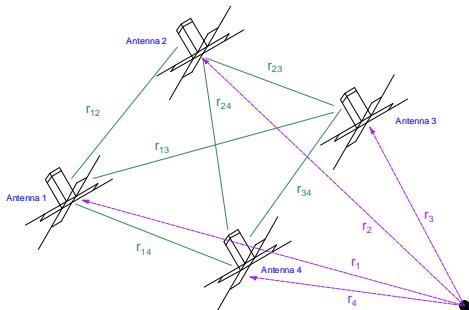
→ **Distributed sensing**
Risk reduction / responsiveness
Capability split

- This type of mission is impossible to accomplish with monolithic satellites
- Other supported architectures allow reduced requirements for payload cubes:
 - Ø Data storage
 - Ø Radio range
 - Ø Power consumption

Enabling technologies

Arrayed electrospray thrusters

MIT Space Propulsion Laboratory
300 μ m separation; 0.1 μ N thrust per emitter at 1900 V, 1 μ A; MEMS fabrication process
Precise attitude control, formation flying



DM3730 system-on-chip module

Texas Instruments, LogicPD
1 GHz CPU, 800 MHz DSP and many peripherals with power consumption near 1 W
Secondary avionics: trajectory planning, payload data processing

Planned flight demonstration

RFSAS – Radio-frequency Sparse Array System

Summary and Recommendations

- Allow contact with COTRs prior to proposal announcement period
 - ø Helps in determining what NASA wants – less wasted time
 - ø Allows crafting on comprehensive program
- Focus individual awards on specific technologies with spin out potential
- Include when possible operational testing (suborbital, parabolic, etc.) with the goal of providing experience to new players
- Not all topics can do all these things. A good mix is desirable.