

Designing Antigen-specific Immunotherapy for Treatment of Type 1 Diabetes.

Kristin V. Tarbell

Immune Tolerance Unit,

Diabetes Endocrinology and Obesity Branch, NIDDK

Outline

- **Background on type 1 diabetes**
- **The role of dendritic cells in type 1 diabetes pathogenesis**
- **Current Immunotherapies: global immunosuppression (not antigen-specific)**
- **Our work in mouse models to develop antigen-specific immunotherapies using dendritic cells**

Islets of Langerhans within the Pancreas

In Type 1 diabetes the beta cells are the autoimmune target.

Clinical complications in Type 1 Diabetes Patients

Hyperglycemia (high blood sugar)

Acute effects: Diabetic Ketoacidosis: Low Insulin leads to a shift from carbohydrate to fat metabolism.

Chronic effects: increased risk for heart disease, neuropathy.

Can be minimized by tight blood glucose control.

HbA_{1c}: a measure of average blood glucose.

Normal is 5. For T1D, goal is usually <7.

Hypoglycemia

The brain is the most sensitive to low blood glucose.

Some T1D patients are hypoglycemic unaware, and blood glucose is lowest at night. (increases mortality)

Type 1 Diabetes incidence is rising 3-5% /year

Natural History of Type 1 Diabetes

Dendritic cells (DCs) are professional antigen presenting cells

+ Antigen
+ costimulation
or cytokine

TOLERANCE

Regulatory T cell expansion/ induction
Anergy or deletion

Imbalance of **tolerance** vs **immunity** =
autoimmunity

IMMUNITY

Effector T cell expansion and
differentiation

- Innate immunity – DCs respond to environmental signals such as pathogens.
- Adaptive immunity – DCs take up, process, and present antigen via peptide-MHC complexes to T cells.

**Goal: To use DCs to induce antigen-specific T cell tolerance
for treatment of autoimmune diabetes.**

Type 1 Diabetes Pathogenesis

Aberrant activation of self-specific T cells

Failure of peripheral tolerance mechanisms

Non-Obese Diabetic (NOD) mice:
80% of females develop spontaneous autoimmune diabetes

Dendritic Cells are Important for Induction of Peripheral T cell Tolerance

Anergy or Deletion

Pathogenic cells become unable to respond, or die after antigen exposure from DCs

Regulatory T cells

Regulatory T cells turn off pathogenic cells via effects on both dendritic cells and T cells.

DCs are important stimulators of Treg proliferation and activation

One approach to treating T1D is to alter T cell responses with antibodies specific for CD3 (anti-CD3)

Co-stimulatory molecules

Anti-CD3 may work by inducing cell death in pathogenic T cells or increasing regulatory T cells

This treatment affects all T cells: not antigen-specific

Anti-CD3 slightly preserves insulin (C-peptide) release in new onset type 1 Diabetics

C-Peptide Release with Glucose Clamping

Insulin Dose

Glycosylated Hemoglobin

But average blood glucose levels are the same

Blue= placebo Red=anti-CD3

Keymeulen et al. 352 (25): 2598, NEJM 2005

A recent Phase 3 trial failed to show efficacy, but a much lower dose was used because of toxicity concerns.

Advantages of Antigen-Specific Therapy

**A vast lymphocyte repertoire = many clones, each specific
e.g., for a microbial, tumor, self or environmental antigen**

**Valuable antibody - based therapies for autoimmunity
e.g., anti-TNF, anti-CD3**

**But these therapies are antigen non-specific
and can potentially dampen responses against
microbial or tumor antigens as well.**

Dendritic Cells Subsets: CD8+ and CD11b+ DCs

CD8+ cDCs

CD11b+ cDCs

Other markers:

DEC-205+

DCIR2+

Immunogenic
functions:

Can cross-present extracellular
antigens to CD8+ (cytotoxic) T cells

Strong stimulation of
CD4+ (helper) T cells

Tolerogenic
functions:

induces Tregs via TGFβ

and Tregs

Uptake of apoptotic cells

Both subsets can induce deletion or anergy to antigen presented absent inflammation

What pathogenic/ tolerogenic roles do these DC subsets have
for autoimmune diabetes?

Targeting beta cell Autoantigens to Dendritic Cells *in vivo*

Does steady-state targeting of beta cell antigens to DCs induce tolerance during chronic autoimmunity?

Can we create a tolerogenic vaccine to turn off the autoreactive T cell responses that induce pathology in T1D patients?

How do CD4 T cells respond to DC-targeted antigen in the context of autoimmune diabetes?

Use autoreactive CD4+ TCR transgenic T cells specific for a beta cell antigen.

Thy1.1+ beta cell-specific CD4+ T cells

Anti-DEC205 or anti-DCIR2 conjugated to beta cell antigen

1 day

3-10 days

Harvest lymphoid tissue, measure T cell responses

T Cell Responses After Targeting Antigen to cDCs

CD8+DEC-205+

Self Antigen in
autoimmune NOD mice

No Tolerance: continued expansion and cytokine production

CD11b+DCIR2+

Tolerance:
Some initial proliferation/
expansion followed by partial
deletion, but almost no cytokine
production.

Model Antigen in
wildtype mice

Tolerance: deletion, anergy,
and/ or Treg induction

Tolerance: deletion, anergy,
and/ or Treg proliferation

Interactions between CD40L on activated T cells and CD40 on DCs enhances immunity

Would blocking this interaction help restore tolerance when given with DC-targeted antigen?

T Cell Responses After Targeting Antigen to cDCs

Self Antigen in autoimmune NOD mice

CD8+DEC-205+

Tolerance:
initial proliferation
followed by partial
deletion, but without
cytokine production.

CD11b+DCIR2+

Tolerance:
Some initial proliferation/
expansion followed by partial
deletion, but almost no cytokine
production.

Acknowledgements

Next steps:

- Test whether targeting beta cell antigens to either DC subset (with or without α CD40L) can alter diabetes development.
- Try inhibiting other proinflammatory signals.
- Find better ways to deliver inhibitory signal

Current lab members

Jeff Price
Cosima Kretz

Alan Guerrero
Barret Zimmerman
Anjana Sinha

Former lab members

Annie Lau-Kilby
Grace Linder
Angel Li

