



# Linkages: Water and Renewable Energy Recovering Ammonia for Hydrogen Biofuel Production during Anaerobic Digestion

**Donna E. Fennell**  
Rutgers University, New Brunswick, NJ, USA

**1st Arab-American Frontiers of Sciences, Engineering, and Medicine Symposium**  
Kuwait Institute for Scientific Research and the U.S. National Academies  
October 17-19, 2011 Kuwait City

## Acknowledgements

- Funding



Dr. David Babson

- Contributors

- Miss Xian Huang
- Miss Liang Chen

- Collaborators

- Prof. Lily Young
- Prof. Uta Krogmann
- Dr. Valdis Krumins



Prof. Shaurya Prakash  
The Ohio State University

# Background

## Water and Renewable Energy

Renewable energy efforts may have unforeseen environmental consequences for local water supplies and wastewater treatment systems.





We need to be (more) sustainable...

---

### THE BIOENERGY AND WATER NEXUS



# Anaerobic Digestion

## Advantages

- Established technology for many wastes
  - sludges, solid waste, manures, food and crop wastes
- Scalable
- Methane has existing infrastructure/end uses

## Disadvantages

- Conversion efficiency is low
- Process can be finicky
- N and P are liberated
- Residuals need further treatment and disposal

Low Tech



High Tech



# How Does It Work?



# Anaerobic Digestion of Biomass



# Ammonia and C:N Ratio



- Ammonia released is a function of the organic nitrogen in the feedstock
- The C:N ratio is the ratio of carbon to nitrogen (g/g)

# C:N Ratio and Ammonia Toxicity

- As C:N ratio  $\downarrow$  the total ammonia nitrogen (TAN)  $\uparrow$
- TAN as low as 1.5 g/L may inhibit digester microbial communities
- To control ammonia toxicity
  - Increase feedstock C:N
  - Remove ammonia

## Ammonia/Ammonium



## Total Ammonia-N (TAN)



# The Nitrogen Cycle



Image modified from  
© 2010 Nature Education

# Ammonia

- Ammonia causes eutrophication and is toxic to aquatic life, so it must be carefully managed
  - Used as a fertilizer
  - Treated/removed
- In population centers far from agricultural systems, use as fertilizer may not be economical or energy efficient
  - Net food importers
  - Net nutrient importers
- Traditional treatments are aerobic, energy intensive processes



To remove  
 $\text{NH}_3$   
energy/mass  
inputs are  
required

C-source  
in



Image modified from  
© 2010 Nature Education

# Aerobic Treatment to Remove Ammonia



# Is There Another Way?

Our work  
considers  
 $\text{NH}_3$  an  
energy  
output



# Approach

## **Anaerobic Digestion Bioammonia to Hydrogen (ADBH) System**

- Could bioammonia liberated during anaerobic degradation of biomass be converted to hydrogen, as part of an integrated anaerobic digestion system?
- Is the energy balance favorable for this process?
- Establish theoretical design and conduct energy balance

# ADBH System: Three Integrated Systems



# Trial Variable Inputs

| Parameter Description                   | Input Value                  |
|-----------------------------------------|------------------------------|
| Dry-Solids Flow                         | 1,000 kg/hr                  |
| Degradable Organic Fraction (DOF)       | 0.80                         |
| Moisture Content (wt.% water)           | 90.0%                        |
| Aqueous Ammonium Loading                | 100 mg $\text{NH}_4^+$ -N/L  |
| Percent Recycle                         | 65.0%                        |
| Ambient-Digester Temperature Difference | 40.0 K                       |
| Internal Heat and Power Efficiency      | 0.35                         |
| <b>C:N Ratio</b>                        | <b>Variable (3.0 to 136)</b> |

# ADBH System: Anaerobic Digester

## Inputs and Outputs



- Energy
  - Heat
    - Influent heating
    - Heat loss across the digester boundary
  - Mixing

# Stoichiometry of Biomass Conversion



## Overall Stoichiometry



# C:N Ratio and TAN



# ADBH: Ammonia Recovery System

## Inputs and Outputs



- Energy
  - Stripping power
  - Mixing enthalpy in pH-shift reactors
  - Velocity gradient mixing in pH-shift reactors

# ADBH: Ammonia Reforming System

- Chemistry

- Combustion  $\text{CH}_4 + 2 \text{O}_2 \text{ (Air)} \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O}$   
to heat catalyst

*Consume some  
methane from  
biogas...*

- Reforming  $2 \text{NH}_3 \text{ (g)} \rightarrow \text{N}_2 \text{ (g)} + 3 \text{H}_2 \text{ (g)}$

*...to remove  
ammonia  
and*

*... produce  
hydrogen  
biofuel*

# Conclusions

## Conclusion

- The bioammonia to hydrogen process could increase the total energy recovery compared to the methane potential alone for digesters operated with feedstocks with C:N ratios less than ~17

# Ammonia Release During Digestion



Ammonia is released rapidly from proteins and urea



# Implications



# Implications

- Traditional treatment is expensive
- For urban / suburban centers far from land/crop nutrient demand, fertilizer use may not be energetically or economically favorable



waste food, msw

*Methane*

*Residual*



# Implications

- A new paradigm considers waste ammonia as an energy source



crops, residues



human waste



waste food, msw

BIOMAS

Methane



anaerobic  
digestion

Residual

AMMONIA



nitrification-  
denitrification



crop  
application



hydrogen