

Latest Technologies in Water Desalination

Amy E. Childress Department of Civil and Environmental Engineering University of Nevada, Reno

1st Arab-American Frontiers Symposium

Kuwait Institute for Scientific Research and U.S. National Academies October 17-19, 2011 in Kuwait City

Outline

Introduction

- Fresh water scarcity
- Alternate sources and new technologies
- Desalination by reverse osmosis

• Emerging Technologies for Desalination Applications

- Membrane Distillation
- Forward Osmosis
- Pressure Retarded Osmosis

• Final Remarks

Forcing water providers to rely more on alternative sources

Desalination Applications and Salinity Levels

- Seawater desalination (35-41 g/L)
- In-land groundwater desalination (2-6 g/L)
 - RO brine (>40 g/L)
- Extreme salinity scenarios (>100 g/L)
 - Oil and gas applications
 - Mineral mining (water is by-product)

Current Leading Desalination Technology: Reverse Osmosis

- Produces water with <500 mg/L salts
- Less energy intensive than distillation (~10x less)
- But... does have drawbacks
 - 1. passage of some contaminants \rightarrow dual osmotic barrier (FO/RO) or MD
 - 2. reduced driving force at high salt concentrations \rightarrow osmotic dilution or MD \rightarrow FO as pretreatment for RO
 - 3. membrane fouling

Emerging Technologies:

Membrane Distillation (MD) Forward Osmosis (FO) Pressure Retarded Osmosis (PRO)

Direct Contact Membrane Distillation

Driving Force in MD

Addresses RO Drawback 1: Reduced Driving Force at High Salt Concentration

Industrial Mineral Harvesting Great Salt Lake, Utah

Tzahi Cath's Lab at Colorado School of Mines

Desalination of Hypersaline Lake Water

Constituent	g/L
CI	83
SO4	10
Са	0.3
K	3
Li	0.03
Mg	6
Na	47
TDS	149 g/L

Emerging Technologies:

Membrane Distillation (MD) Forward Osmosis (FO) Pressure Retarded Osmosis (PRO)

Emerging Technology: Forward Osmosis

Ammonia-Carbonate FO Process

Emerging Technologies:

Membrane Distillation (MD) Forward Osmosis (FO) Pressure Retarded Osmosis (PRO)

What is Pressure-Retarded Osmosis?

- An osmotically driven membrane process similar to RO and FO
- A source of renewable and sustainable energy

 \mathbb{N}

global energy production from mixing in estuaries: 2,000 TWh/y current global energy production from all renewable sources: 10,000 TWh/y

R

What is Pressure-Retarded Osmosis?

- An osmotically driven membrane process similar to RO and FO
- A source of renewable and sustainable energy
- A process of capturing the energy released from the mixing of freshwater with saltwater

M

What is Pressure-Retarded Osmosis?

- An osmotically driven membrane process similar to RO and FO
- A source of renewable and sustainable energy
- A process of capturing the energy released from the mixing of freshwater with saltwater

What is Pressure-Retarded Osmosis?

- An osmotically driven membrane process similar to RO and FO
- A source of renewable and sustainable energy

N

 A process of capturing the energy released from the mixing of freshwater with saltwater

Power Generation with PRO

chemical potential transformed to hydraulic potential

M

Final Remarks

- There is no single best method for desalination
 - Water source and energy availability
 - Treatment needs
 - Sustainability considerations
- The needs for all processes are similar:
 - Commercial competition for membranes
 - New membrane modules / packing
 - Cost models
- MD, FO, and PRO have implications for wastewater reuse

M

Acknowledgements

- California Department of Water Resources
- National Aeronautics and Space Administration
- Office of Naval Research
- U.S. Bureau of Reclamation
- U.S. Department of Energy
- Hydration Technology Innovations

- Dr. Andrea Achilli
- Dr. Tzahi Cath
- Dr. Scott Tyler
- Dr. Francisco Suarez
- Katie Bowden, Jeri Prante, Guiying Rao, Jeff Ruskowitz

amyec@unr.edu