

Transforming Institutional Infrastructure for Research Linking Knowledge with Action

Rajesh K. Gupta, UC San Diego

- Professor & Chair, Computer Science & Engineering
- Associate Director, California Institute for
Telecommunications & Information Technology

Sustainability Solutions Institute
UC San Diego

Outline: Sustainability is about Future Stable Institutions Plan for the Long Term

- The University
 - The Convent
- Sustainability Research
 - The Dominance of 'data'
 - Hyperscaling: a “million-student” classroom
- A Compelling Infrastructure
 - The City and The Corporation

Caveats:
Energy sustainability,
engineer's angst,
academic's sweeping
generalization.

Universitas magistrorum et scholarium

a community of teachers and scholars

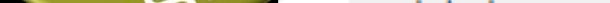
- a unibody of people, place and piety
 - pursuit of knowledge intimately tied to living
- Modern university
 - Unbundling of “uni” into a multi-verse of
 - Knowledge specialization
 - Imported workflows and systems that constitute the basic infrastructure for conducting scholarly activities
 - Printing press, laboratories, transportation networks
 - “a corporation” of ideas, skills?
 - **Not Really**. It is also a place for natural expression of a society’s aspirations.

» college | opinions & advice | green guide

The Princeton Review's Guide to 322 Green Colleges

related articles

- » The Princeton Review's Guide to Green Colleges
 - » See the full list of schools
 - » See the full list of schools by state
 - » The Best 376 Colleges


[download...](#)

- ## » The Princeton Review's Guide to 322 Green Colleges *

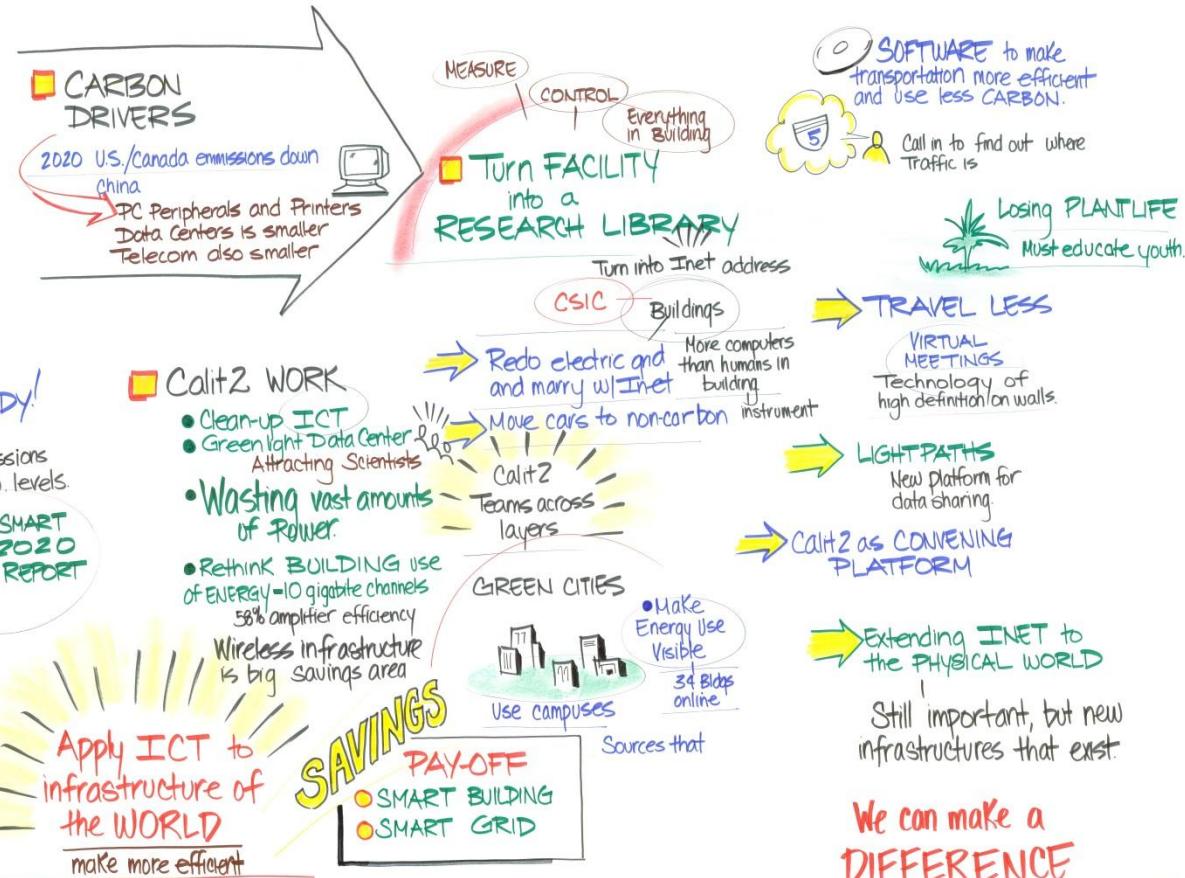
* Download is for personal use and not for reproduction or posting.

you might also like...

- » Read the press release
 - » Green colleges
 - » Green rating press release
 - » Green honor roll
 - » Green colleges and quality of life
 - » Green colleges and the economy
 - » Green colleges and the school visit
 - » Green colleges quiz

3,000 College buildings , 3.48 billion \$ in construction % of students receiving need-based scholarships or aid

» About our partner ecoAmerica


Green Facts

% food budget spent on local/organic food	3
Available transportation alternatives:	
free bus pass, universal access transit pass, restricted parking, bike share/rent, car share, carpool parking, vanpool, market based pricing (hourly parking costs), guaranteed ride home	
School has formal sustainability committee	Yes
New construction must be LEED-certified or comparable third-party rating system	Yes
Waste diversion rate (%)	51
Environmental studies degree available	Yes
Public GHG inventory plan	Yes
% of school energy from renewable resources	2
School employs a sustainability officer	Yes
School provides guidance on green jobs	Yes
% school cleaning products that are green certified	76
% school grounds maintained organically	50
College's tuition	23,663
State tuition	48,093
Room and board	3.98
Books and supplies	540-670
Transportation	610-720
Other fees	560-690
Total tuition	\$10,152
Total room and board	\$33,030
Total books and supplies	\$1,976
Total transportation	\$11,684
% of students receiving need-based scholarship or grant aid	62

Universities enable Learning & Living in Future

CARBON CONSTRAINED ENVIRONMENT

Director Larry Smarr

A Weekend Discussion in April 2009.

Identify

SWEETSPOTS THE NEXT 3-5 YEARS

BEST PRACTICES

INTERNATIONAL
INNOVATION
DISSEMINATOR

ONLINE
SUSTAINABILITY
PROJECT
AGGREGATOR
AND
COMPARATOR

Organize a
Global set of
"Greening" Campuses
that compare data

Effective
Technology
Transfer

Micro-tools
versus
Big Impact

SCHOOL
OUTREACH
in
ENERGY TOPICS

SIMULATION

Geoengineering
by Simulation

Create a "digital
Socia" environment
model to understand
water, transportation, and
land use research

"Sim World" + type
game / online environment
to illustrate & model
global systems (e.g.,
climate, energy, etc.)

Simulation
of Central
Valley Ag. &
Water Scenarios
e.g. reclaimed
water, desalination

INFRASTRUCTURE
SHIELDING
- LAND USE / HUMAN
POWER
- TRANSPORT
- UTILITIES
- ECONOMIC ANALYSIS

data sonification

BEHAVIOR MODIFICATION

Makes information
beautiful, and
behavior change
fun.

Music Environment
[verified positive individual
client behavior for
free download music]

Mobile
energy
coach

Campus-scale
human behavior
modification testbed
for lowering carbon
lifestyles

Infrastructure for
health monitoring
and shared sense
making.

data sonification

DASHBOARD DECISION SUPPORT TOOLS

Integrated
systems to
deliver your
Resource usage
TO YOU!

Visualizations
- User Interfaces
for aggregated data
about Energy Consumption

CREATION OF
DATASET TO ENABLE
UNDERSTANDING OF
WHERE ENERGY
GOES?

Environments
that display
energy usage

INTUITIVE REAL-TIME
ENERGY FEED BACK
FOR WORK GROUPS
VIA VIRTUALIZATION

TIME
HORIZONS
VISUALIZATION

REAL-TIME
PERSONAL CONTROLS
FOR ELECTRICITY
SOURCING.

BETTER
CARBON
CALCULATOR

SENSORS

Data mining
of large scale
sensor nets
to learn about
consumption

Power for large
scale sensor
network

Low energy consumption
Sensor Devices for
Data Collection, Inform
feedback to improve
management Efficiency.
Regulation, provision.

Sensor
Development for
occupant heat load

Making
Sensor Data
Availability
Across Devices

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING
SENSOR DATA
AVAILABILITY
ACROSS DEVICES

REAL TIME
SENSING

ANNOTATED
WORLD

MAKING<br

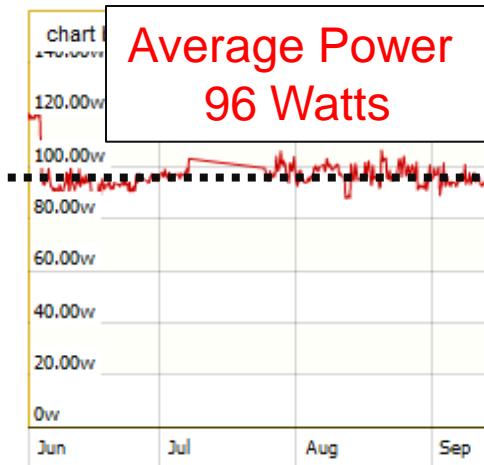
Making Buildings Energy Efficient

Increasing bandwidth of use, decreasing granularity of response.

1. Reduce energy consumption by IT equipment

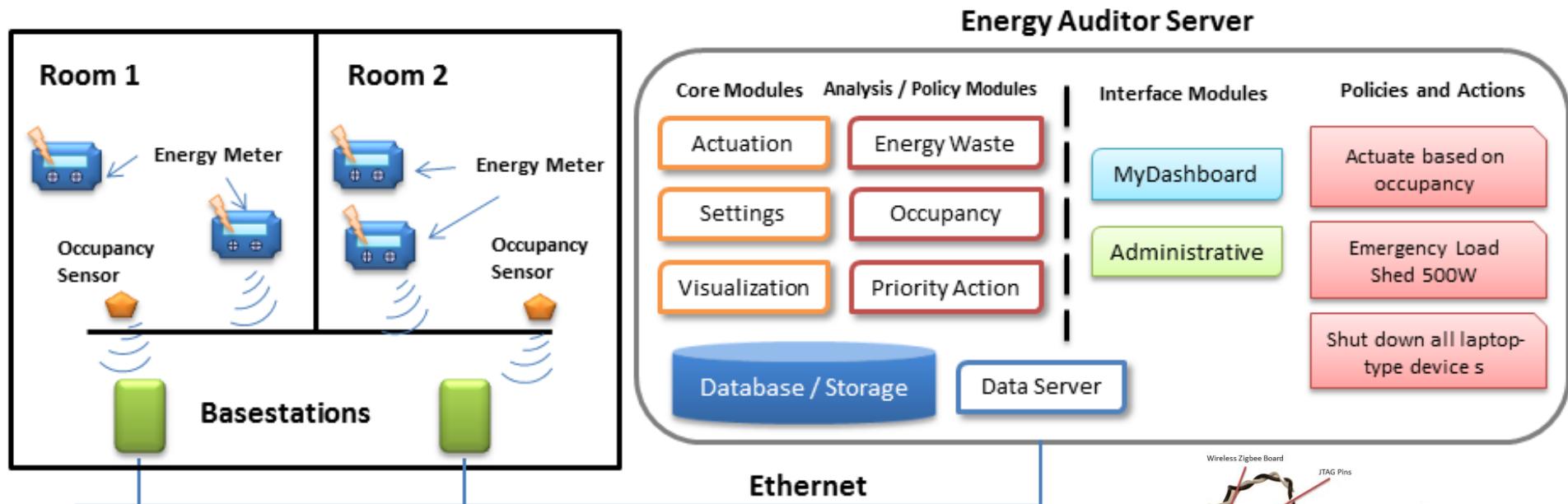
- ❑ Servers and PCs left on to maintain network presence
- ❑ Key: “Duty-Cycle” computers aggressively maintaining availability
- ❑ *Somniloquy* [NSDI ‘09] and *SleepServer* [USENIX ‘10]

2. Reduce energy consumption by the HVAC system


- ❑ Energy use is not proportional to number of occupants
- ❑ Key: Use real-time occupancy to drive HVAC at fine spatial scales
- ❑ *Synergy occupancy node* [BuildSys ‘10], *HVAC Control* [IPSN ‘11]

3. Reduce energy consumption by Plug-Loads

- ❑ “Dark-loads” distributed over a building, diverse types
- ❑ Key Idea: Measure and actuate based on “policies” at fine temporal scales [BuildSys’11].

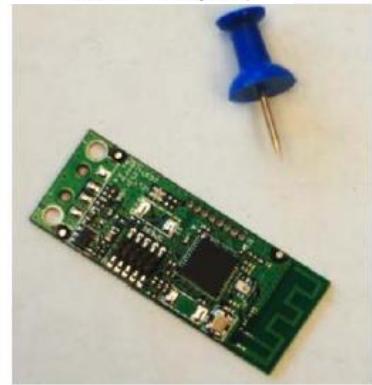

1. IT

SleepServers: Enable Aggressive Duty Cycling

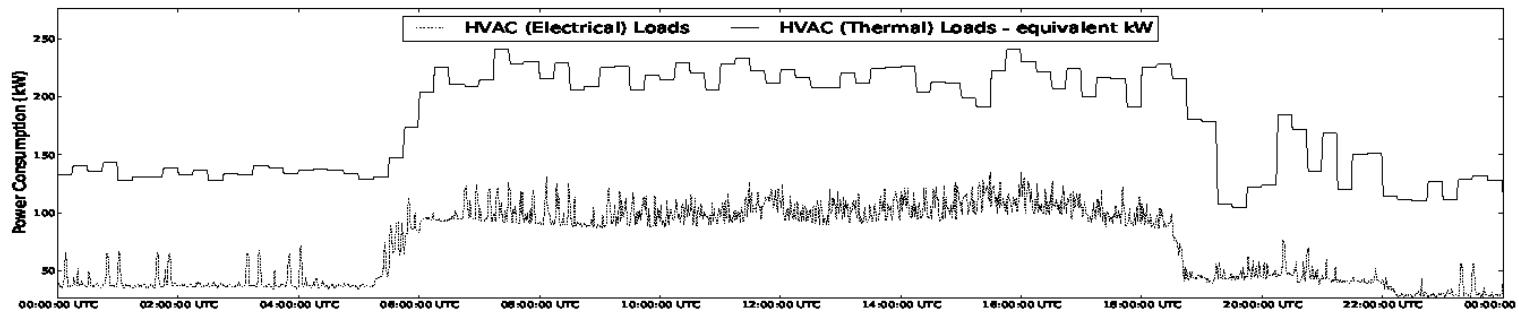
68% energy savings since *SleepServer* deployment

5 buildings
1M sq. feet
50% PC penetration
Target: 40% savings
\$800K off \$2M

2. HVAC Occupancy-driven HVAC


(a)

(b)


(c)

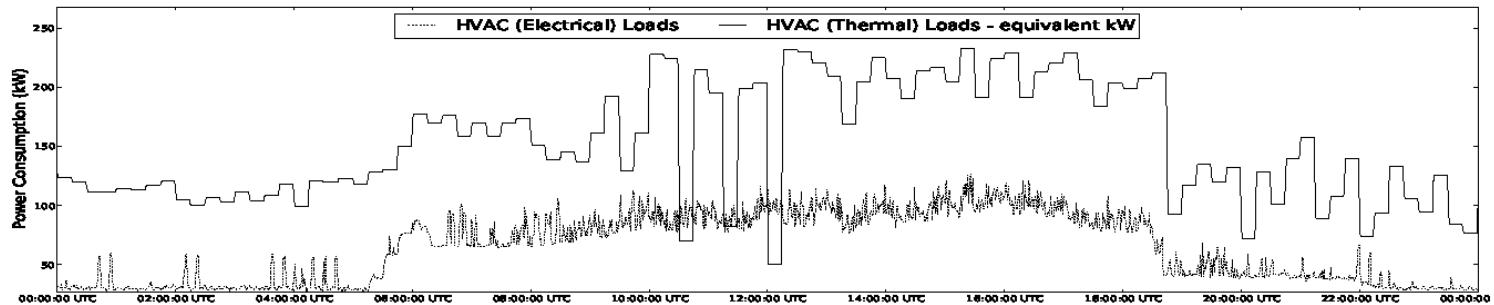

(d)

Figure 4. Picture of our energy meter (a, b) along with our SheevaPlug base station (c) that is deployed in the hallways. The CC2530 based wireless module that are in both the base station and the energy meters is also shown (d).

2. HVAC Energy Savings

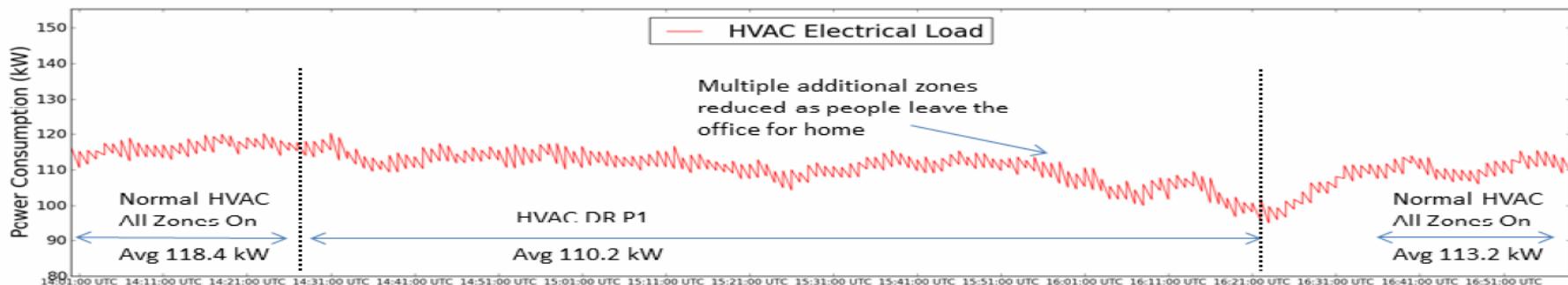
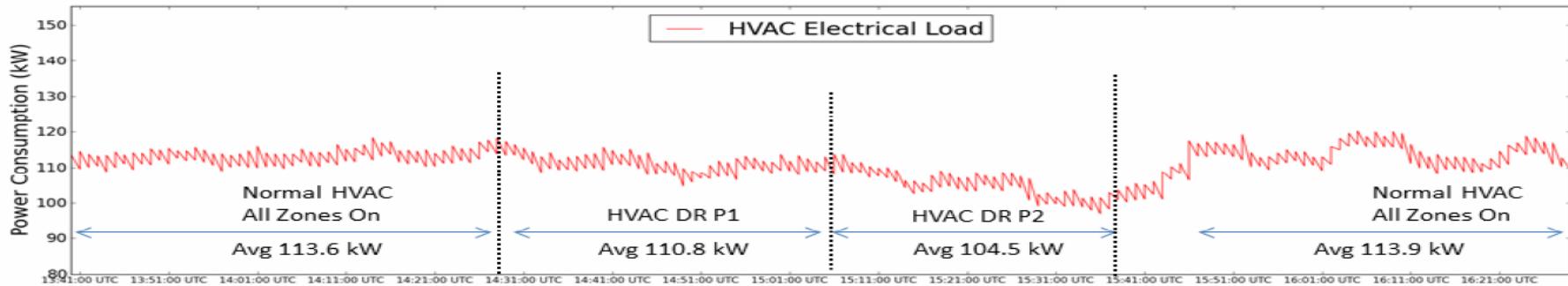
HVAC Energy Consumption (Electrical and Thermal) during the baseline day.

HVAC Energy Consumption (Electrical and Thermal) for a test day with a similar weather profile. HVAC energy savings are significant: over 13% (HVAC-Electrical) and 15.6% (HVAC-Thermal) for just the 2nd floor

Estimated 40% savings across entire building. Detailed occupancy can be used to drive other systems.

3. Plug Loads

Demand Response

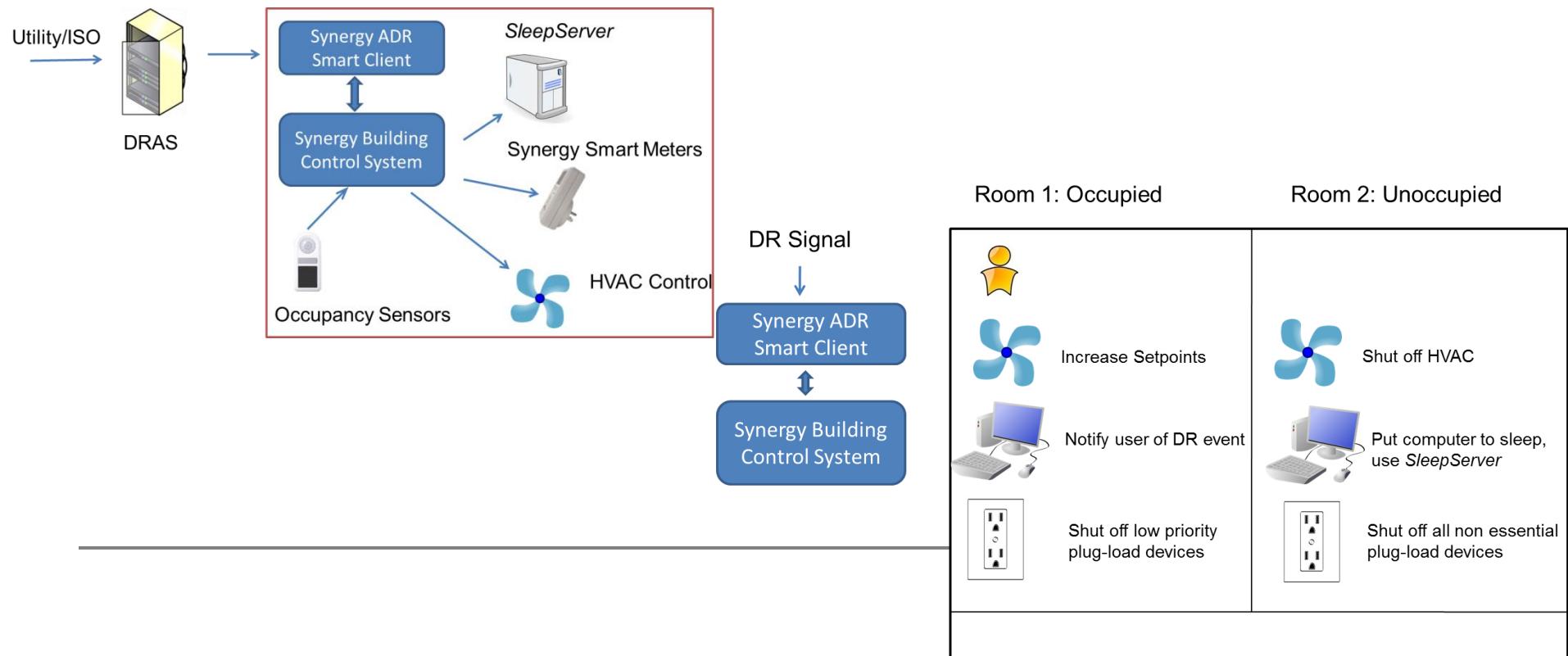


- 54 HVAC zones including 1 kW corridor each floor
 - 15-20 kW per floor, 260-358 W per zone
 - DREM for plug loads with device type and priority levels
 - Actuation classes: Off (PL 1), Occ_low (PL 2), Occ_hi (PL 3), On (PL 10).

	Subsystem Type	DR Priority-1 (P1)	DR Priority-2 (P2)
Plug Load Devices			
1	Class: always-off Space heater, fans Laptops, Chargers	Occ: Load=OFF NotOcc: Load=OFF Inconvenience=1pt/10min Savings -> Device Load(Occ) Savings -> Device Load(NotOcc)	Occ: Load=OFF NotOcc: Load=OFF Inconvenience=1pt/10min Savings -> Device Load(Occ) Savings -> Device Load(NotOcc)
2	Class: 0occupancy-Based-Low PC Speakers, Room Printers	Occ: Load=ON NotOcc: Load=OFF Inconvenience=0pt Savings -> Device Load(Occ) Savings -> No Savings (NotOcc)	Occ: Load=OFF NotOcc: Load=OFF Inconvenience=1pt/10min Savings -> Device Load Savings -> Device Load (NotOcc)
3	Class: 0occupancy-Based-High Lamps	Occ: Load=ON NotOcc: Load=OFF Inconvenience=0pt Savings -> No Savings (Occ) Savings -> Device Load (NotOcc)	Occ: Load=OFF NotOcc: Load=OFF Inconvenience=0pt Savings -> No Savings (Occ) Savings -> Device Load (NotOcc)
4	Building OS?	Desktop Computers and LCDs Active NotOcc: Sleep if CPU < 10% Inconvenience=0pt Savings -> No Savings(Occ) Savings -> Desktop + LCD (NotOcc)	Occ: Sleep if no input for 5mins NotOcc: Sleep Inconvenience=1pt Savings -> Desktop+LCD if allowed to sleep(Occ) Savings -> Desktop+LCD (NotOcc)
Heating Ventilation and Air Conditioning (HVAC) System			
5		Occ: ON NotOcc(all rooms in zone): OFF Inconvenience=1pt/room, 3pt/shared zone* Savings -> 260W-358W per zone shutdown	Occ: ON NotOcc(at least 1 room in zone): OFF Inconvenience=2pt/10min room, 6pt/10min shared Savings -> 260W-358W per zone shutdown

OpenBuildings

Building
OS?

30 Room Deployment

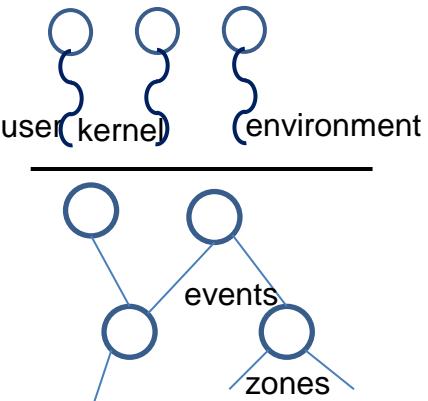


36.9% lower energy use over 8-hour work day. DR response in minutes.

There is a 10X reduction as a LHF

■ Interfacing with smart grid:

- An emerging communication plane over the electrical grid
- Demand Response is key to this interface
- From day-ahead planning to hour-ahead DR


Matlab

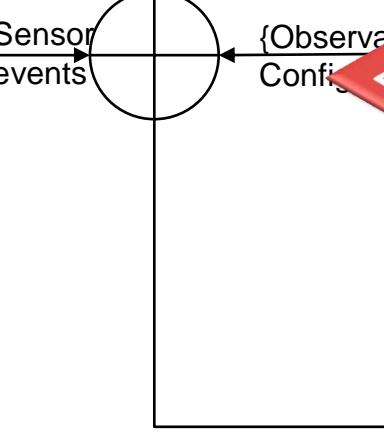
HVAC/IT

Embedded Control

Spatio-temporal data capture

Observational Models

Use scenarios

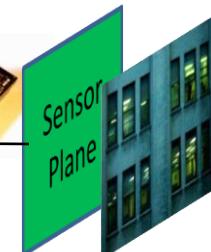
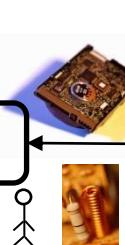

Planning

Operation

Cooperation

Policy Framework

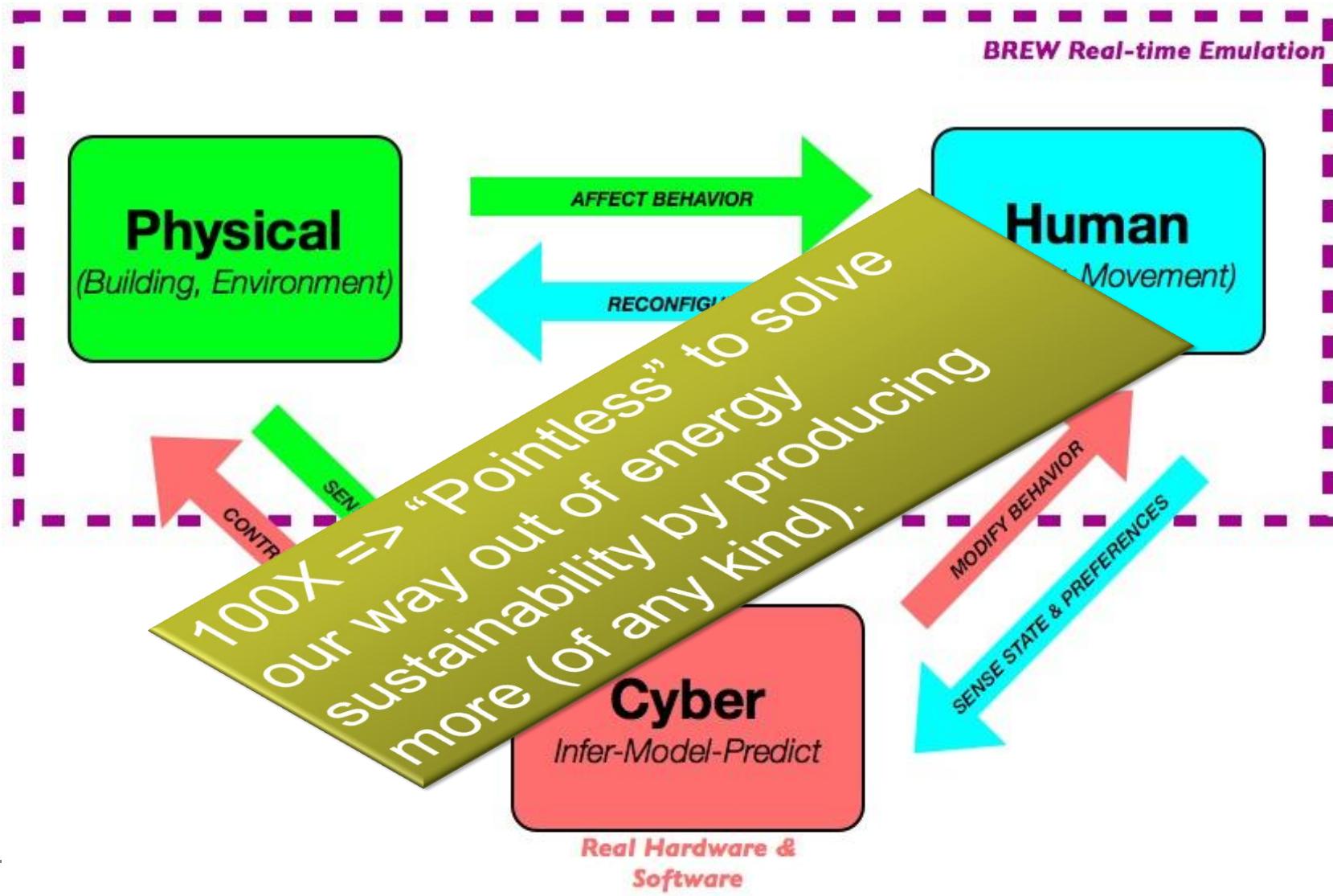
Data drives ever fine
spatio-temporal
resolutions of our
awareness.



Reduced observer +
controller

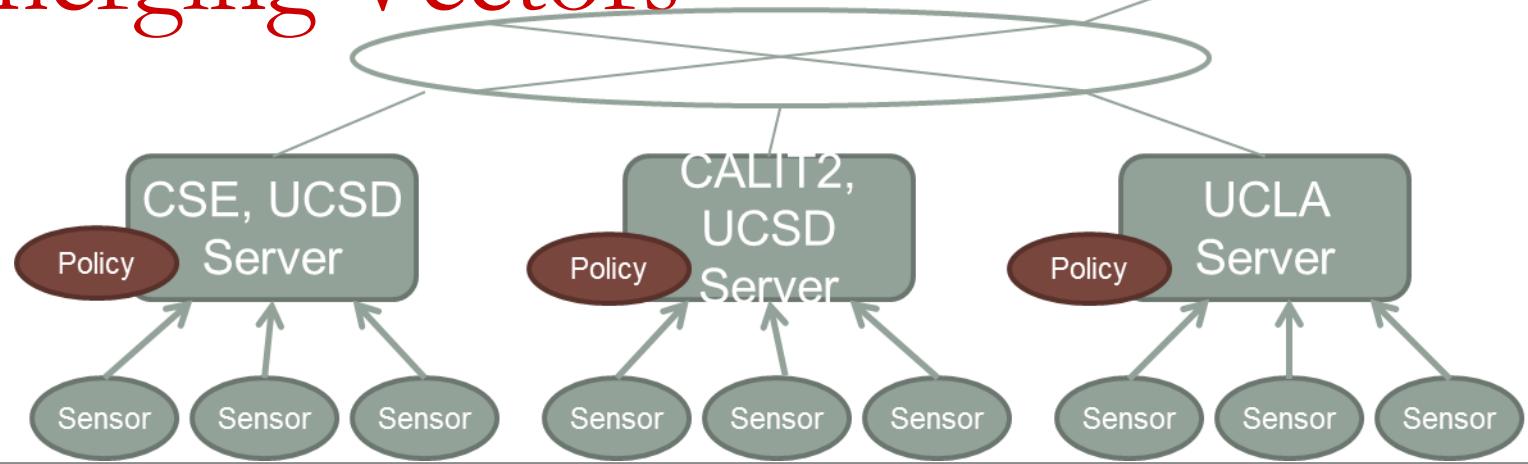
Trace playback

Real-time sensor
inputs

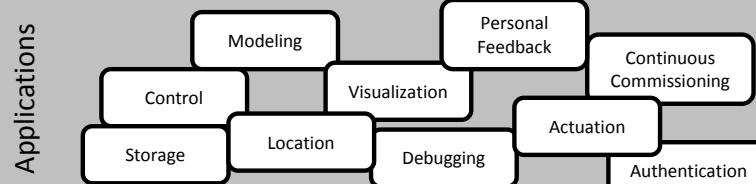
Model
Adaptor


Model
Reduction

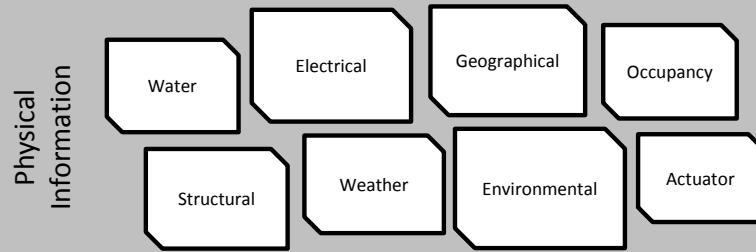
Building Target


Policy
Human
Engineering

And a 100X in a coupled system!



Emerging Vectors


Openbuilding.org
(Search Service)

sMAP Architecture

sMAP

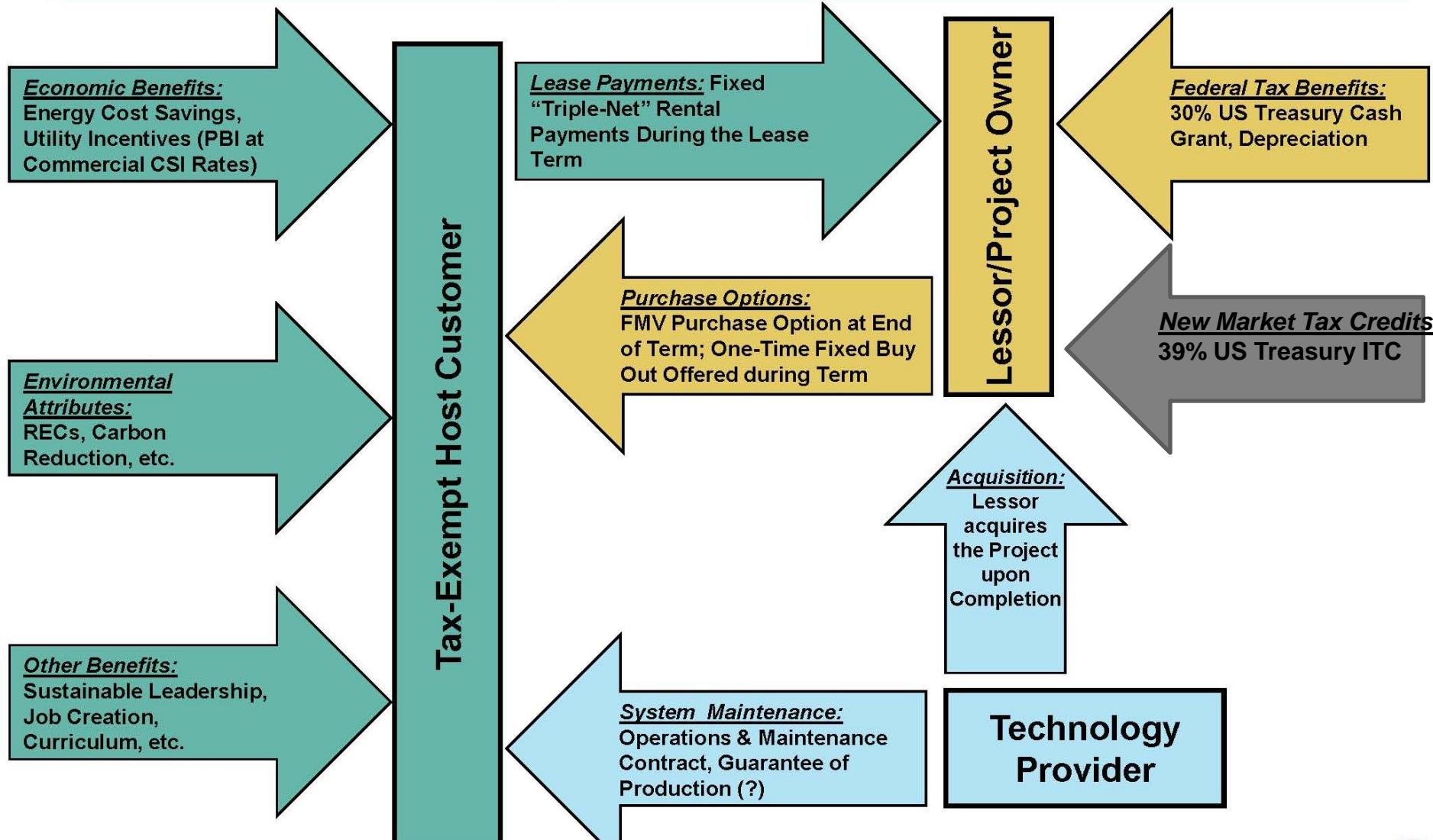
Horizontal Architecture

Vertical Protocol Layering

Enter The Corporation

photographed by
Jeff Park, 2009

A “compelling” place for practice in living as a community

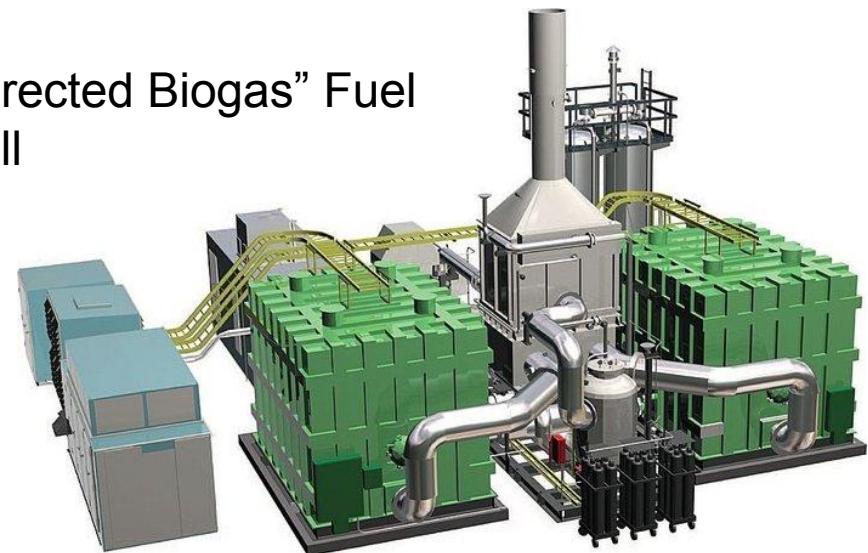

- **12,000 acres, 45,000 occupants, 8,000 residents**
- **2 hospitals (with local generation), 15 restaurants**
- **450 buildings, 11 million square feet of building space**
- **Over \$250M in capital construction/year**
- **Generates 80% of its own electricity usage including**
 - **2.8 MW fuel cells, >2 MW PV, Wind, 15% of daily energy stored**
- **Meters & Monitors everything:**
 - **50K meters, 4.5K thermostats**
- **16 weather stations, real-time monitoring,**
 - **tracks moving clouds across the campus to drive dynamic PV load shifts from 50 kW/sec to 1 kW/sec.**
- **Self-regulating entity, its own police.**

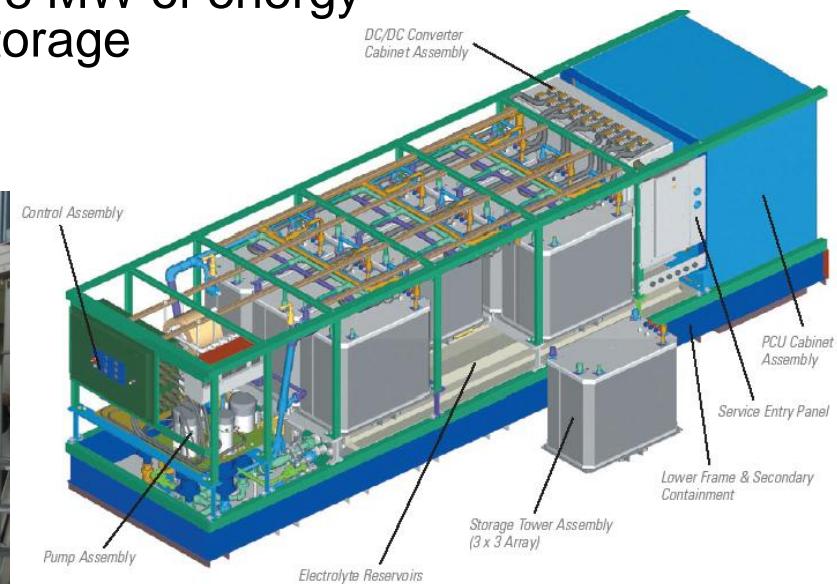
“The Corporation” under “True Lease” Rules

- Section 1603 of the Tax Code
 - Originally enacted under ARRA as “cash grants in lieu of tax credits” for clean energy projects struggling for financing since the tax shelter market had dried up, 30% cash grants to lessor
 - 100% funding for PV projects, 2.8 MW Biogas Fuel Cell project
- An example of where modern corporation meets researchers in the middle
 - 11:1 leveraging of donor funds by ensure 5% start of construction in 2011.

True Tax Lease for California Solar PV Projects

Diagram of True Lease Transaction Structure


An Explosion of “Corporate Projects”


Access to
DC Power

“Directed Biogas” Fuel Cell

2.8 MW of energy
storage

Campus As A Living Laboratory of Localized Co-Generation and Storage

Campuses as Living Laboratories for the

Greener

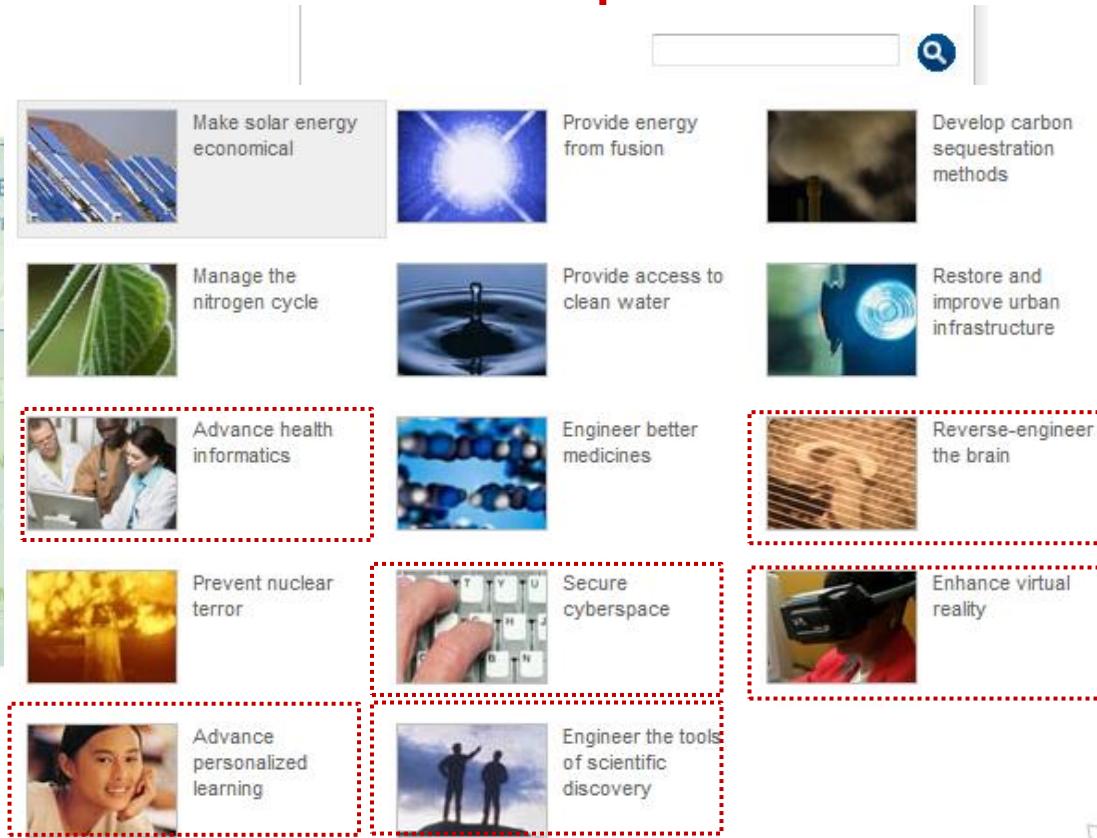
By Bill St. Arnaud, Larry Smarr, Jerry Sheehan, and Tom DeFanti

We enter 2010 at a turning point in the debate on global climate change, in which the focus is rapidly moving from a scientific analysis of how human activity affects climate to a political discussion on how best to regulate greenhouse gas (GHG) emissions so as to lessen the human and environmental toll of global climatic disruption. Policymakers in many countries are actively engaged in drafting legislation at the local, state/province, and federal levels to enact substantial regulations on GHG emissions. Colleges and universities, swept up in this legislation, will soon have to measure and abate campus GHG emissions or face severe repercussions.

Bill St. Arnaud is Chief Research Officer at CANARIE, the UCSD Jacobs School's Department of Computer Science, the California Institute for Telecommunications and Information Technology, and the University of California at San Diego. Tom DeFanti is a Senior Research Scientist at the University of California at San Diego.

We can not talk our way out of the sustainability challenges. Even basic science will require deployments, gathering and understanding data.

Roadmap to a green campus, USGBC.



Since college and university campuses are effectively small cities, they are an ideal scale for exploring innovative approaches to the reduction of carbon footprints.

Computer Science As A Discipline

NATIONAL ACADEMY OF ENGINEERING
OF THE NATIONAL ACADEMIES

- CS favorite preoccupations now go beyond data
 - Ballots, Equity, Access, Health
- Special role of NSF in driving this change.