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Overarching Observations:
trade-offs, regional nature & role of modeling:

* The energy-water nexus is about trade-off, between fuel,
efficiency, power plant technology, and cooling
technology (capital cost and LOC), CO,, water use.

* |tisregional as well as temporal, depends on weather,
fuel and water availability (CO, is global) .. withdrawal
translates to consumption

 Modeling: intermediate fidelity (physics based) is needed
to cut through the complexity .. for optimizing the
solution and accounting for uncertainty.

* Data for validation are needed, both coarse and fine
grain, spatial and temporal, over fuel and technology.




Power plant energy balance tradeoffs
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Solar thermal, geothermal and nuclear plants run at lower temperatures than combustion plants,
have lower thermal efficiencies and higher water footprints — but lower carbon footprints! 3



Cooling system types, use and tradeoffs
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Life Cycle Consumption for Electricity Production

Water to produce fuel and for cooling. CCS is higher because of efficiency loss
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Consumption: Gallons of Water Per
MWh Electricity Generated

Deep Shale Natural Gas Integrated Gasification Coal Steam Turbine Nuclear Steam Turbine Concentrating Solar
Combined Cycle *  (from Coal) Combined Cycle

Source: USDOE 2006 (other than CHK data) and USDOE/ NETL 2007
*Average consumption for fuels; Chesapeake data
MWh = megawatt-hour



Why a system-level model of water use?
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- Power plant water use depends on a number of factors

- Field data is often unavailable, unreliable, or coarse-grained

- Detailed models in the literature are not widely applicable
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The model: S-GEM for wet tower cooled plant
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S-GEM “coarse-grain validation”
using water use data from literature

Used S-GEM to estimate water
consumption intensity for a large
number of wet cooled plants in

the US

— Parameter sources:
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* k,: DOE-NETL reference models
* k... Cooling tower models, NCDC
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Compared results to
consumption intensity values
presented in a meta-study of the
literature (Macknick et al, 2011)
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S-GEM : Vetting field data

and what you might learn about quality of data and the source
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Comparison of predicted and reported water
consumption (sites in prior appropriation “western”
states only). Reported values fall within S-GEM for
53.4% of sites (green), 12.6% (red) and 34% (blue).
The linear correlation was 0.96
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Markers indicate basis of water rights laws in US states.
Roughly Riparian law applies where water is plentiful
(eastern states) and prior appropriation otherwise
(western). Sites with highest discrepancies are in riparian
states (not carefully reported!).



Effect of environment on cooling tower consumption
(and how to choose the tower technology)

The same cooling tower
consumes a different amount of
water depending on where it’s
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Finer Grain Validation
plant/month analysis

Plant Cooling n, Measured I, | Measured 7,,, Sariccilz(l)ted Ko (C;ttfilitseod ko
system type (L/MWh) (HHV) L;MWh) L71\4Wh)
Arnot Wet tower 20 2074 32.6% 12.6% 16.6%
Duvha Wet tower 20 2005 33.6% 11.0% 15.1%
Hendrina | Wet tower 20 2327 30.5% 12.4% 16.2%
Kendal Indirect dry -- 136 32.7% -- -
Kriel Wet tower 35 2202 33.8% 3.7% 7.9%
Lethabo Wet tower 39 1819 34.9% 12.8% 17.3%
Majuba Hybrid -- 974 33.1% - -
Matimba Direct dry -- 106 33.5% -- --
Matla Wet tower 14 1994 34.8% 10.3% 14.4%
Tutuka Wet tower 39 1915 35.0% 9.4% 13.9%

Table 1: Coal-fired power plants in the Eskom data set, with median values of measured water consumption

intensity, measured net efficiency, and back-calculated &

os

Rutburg, M., Modeling Water Use in Thermoelectric Power Plants, M.Sc. Thesis, MIT, 2012.
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Figure 1: Accuracy of water consumption calculations using two parameter estimation methods.
Individual plant-month data are shown on the left-hand charts, medians for each plant on the right-hand
charts. Four outlying plant-months (3 from Kriel, 1 from Hendrina) fall outside the plotted range and are
thus not shown in the left-hand charts.
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What we have done/learned so far
(insight and sensitivity):

formulate a coarse grained intermediate-fidelity (energy and

material balance) .... validated against a sample of EIA (plant

by plant) data, compared with data from NREL, further
comparison with of Eskom (monthly, coal, plant by plant zero
discharge data). ...

Model can be used as a quality assurance tool for received
data, design tool, policy and economic assessment tool, etc.

Largest contributors for consumption: plant technology and
source of thermal energy, cooling technologies, other uses
such as desulfurization, cleaning up mirrors, etc.

Define opportunities to reduce water: CHP, fuel switching,
raising plant efficiency, aggressive application of hybrid and
dry cooling, recycling of locally used water, use of lower
quality water .. revisit the trade off.




Research Opportunities;
Modeling, Data and Technology:

 Multiscale physics-based models accounting for the local
conditions (space and time), introduce economics in the
models to understand the trade offs .. adding optimization
tools, accounting for uncertainty. An overall framework to
address the challenges.

* Exercising and refining the models.

* Fine-grained data (plant by plant, location, time and plant
technology) all the way from monthly to day-to-day.
Remote collection and compilation of data

 Water purification technologies microbial fuel cells,
centrifuges, forward osmosis .. Electrochemical, reverse
osmosis, advanced membranes ... adsorbents,
electrocoagulation, steam stripping ...




