



# *Cross Sectoral Energy Water Solutions*

NAS Roundtable on Sustainability  
Energy Water Nexus

**Michael E. Webber, Ph.D.**  
**June 7, 2013**

# ***There Are Good and Bad Tradeoffs At the Energy Water Nexus (Quality)***

- Energy affects water quality (good and bad)
  - Energy is used to treat (clean, move, heat,...)
  - Energy pollutes water (thermal, chemical,...)
- Water affects energy quality (good and bad)
  - Improved efficiency at power plants (thermoelectric, solar PV, ...)
  - Improved recovery for oil and gas production
  - Degraded power generation in heat waves



# ***There Are Good and Bad Tradeoffs At the Energy Water Nexus (Quantity)***

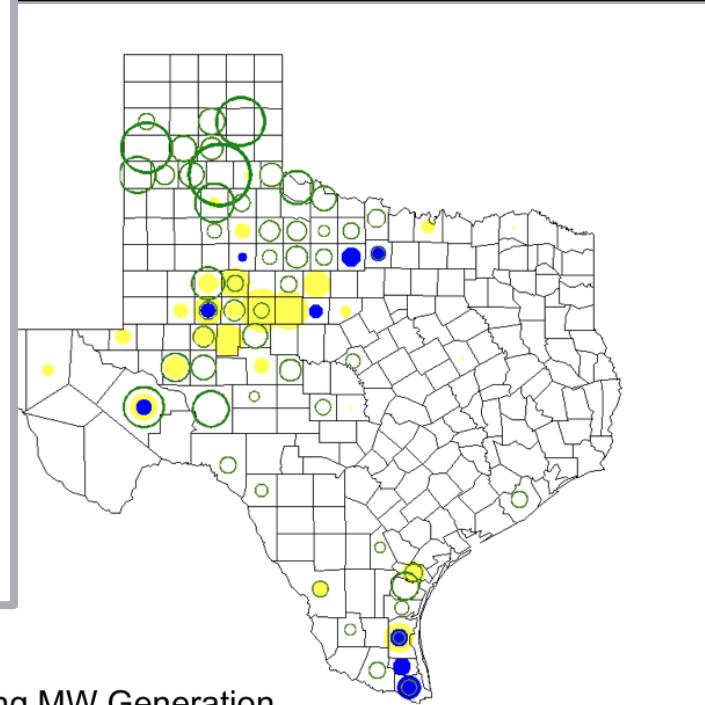
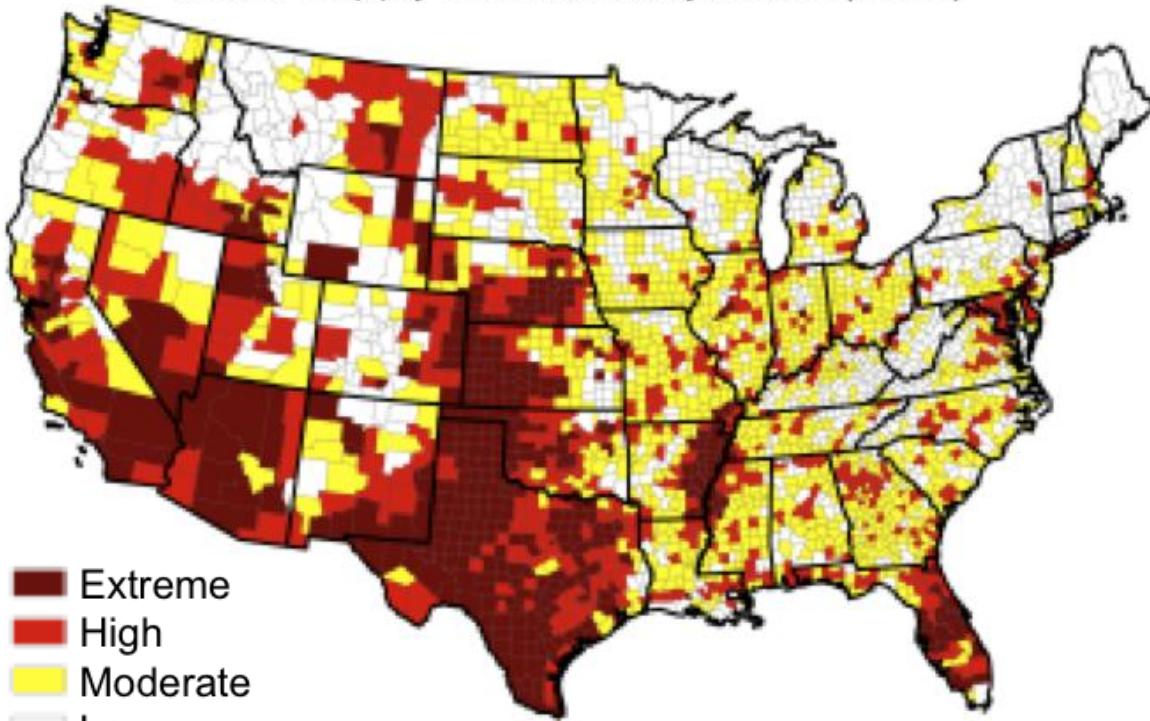
- **With sufficiently abundant, clean and affordable energy, our water problems are solved**
  - Long-haul transfer, desalination, deep wells,...
- **With sufficiently abundant, clean, and affordable water, our energy problems are solved**
  - Biofuels, hydro,...
- **Coupled infrastructures causes cross-sectoral problems**
  - Water constraints become energy constraints
  - Energy constraints become water constraints

# *Cross-Sectoral Integration Holds Promise For Saving Energy and Water*

- We can use the water sector to solve energy problems
- We can use the energy sector to solve water problems



# *The Water Sector Can Be Used To Solve Energy Problems*



- *Energy Recovery from WWTPs*
  - Use wastewater treatment to generate biogas
- *Integrating Renewables with Water Treatment & Desal*
  - Abundant saline/brackish water
  - Abundant wind and solar radiation
    - 1000 hours of negative pricing in Texas because of abundant wind
  - Provide solutions to challenges of each technology
    - Desal addresses intermittent, off-peak nature of wind
    - Wind addresses high marginal energy of desalination



# Water Problems and Wind/Solar Problems Are Often Co-Located

[NRDC]

Water Supply Sustainability Index (2050)



Courtesy: Mary Clayton

# *Power plants can use reclaimed water for cooling*

- Many thermoelectric power plants use non-fresh water for cooling
- In 2010, 46 U.S. power plants used reclaimed water for cooling
- Reclaimed water has advantages
  - Drought-resistant
  - Can be abundant
  - Can be safe
- Reclaimed water can pose operational challenges



Courtesy: Ashlynn Stillwell

# *Power Plants Can Use Reclaimed Water for Cooling*



Sand Hill Energy Center, Austin, TX  
Credit: Austin Energy


Palo Verde Nuclear Plant, Arizona  
Credit: Wiki Commons

# *Integrating Power Plants and Desalination Saves Energy*

- *Powerplants can preheat water feedstream*
  - Increases throughput for membrane systems
  - Reduces energy for distillation systems
    - Example: Abu Dhabi's desal plant
- *Saline/brackish water for cooling solar PV systems*
  - Improves PV performance
  - Preheats water for higher throughput
    - Example: El Paso, TX test systems

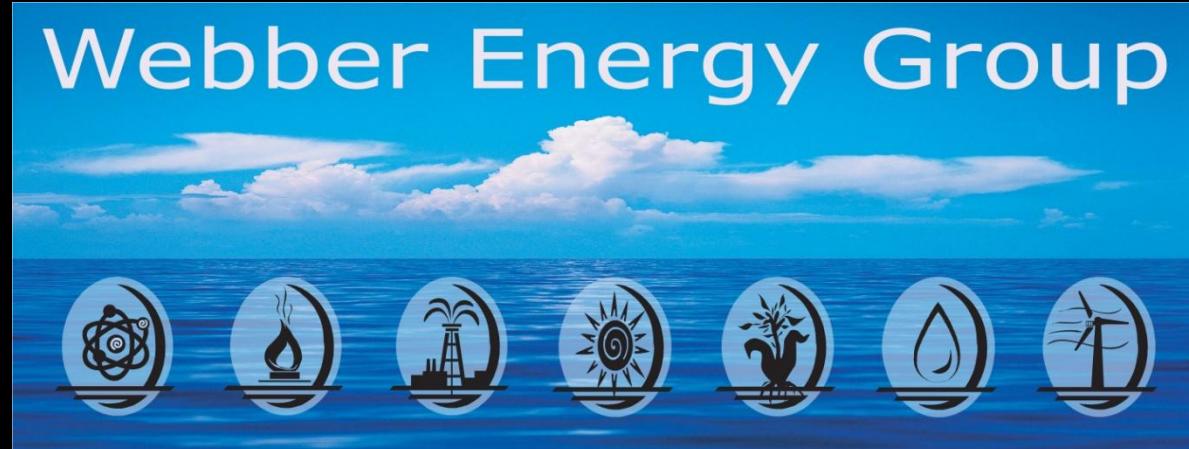
# *The Energy Sector Can Be Used To Solve Water Problems*

- *Dry- and/or hybrid cooling At Large-Scale Implementation*
  - Spares water for many other users
  - An economical approach for drought resiliency
- *Integrating Energy, Air Quality & Water For Dispatching*
- *Incorporating Water Into Grid Planning*
- *Energy Industry's Needs as a Driver for Water Efficiency*
  - Towards efficient water markets



# *The Oil & Gas Industry Could Become the Oil, Gas and Water Industry*

- *Daily liquids production:*
  - Oil extraction: 7 MMBD
  - Wastewater injection: 47 MMBD
    - 2 billion gallons per day (~2% of daily consumption)
- *Capturing Flared Gases for On-Site Water Treatment*
  - Up to 1/3 of gas production is flared (N. Dakota)
  - 3 wastewater streams: muds, flowback, produced
  - Flow rates decrease, TDS levels increase with time
  - Using flared gases for treatment via thermal distillation: reduces trucks, increases water supply, reduces flares, ...


# Michael E. Webber, Ph.D.

*Deputy Director, Energy Institute*

*Associate Professor, Mechanical Engineering*

*Co-Director, Clean Energy Incubator*

webber@mail.utexas.edu



<http://www.webberenergygroup.com>