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The living bridges of Cherrapuniji, India are made from the roots of the Ficus elastica tree. (htt_b://rootbridges.blogs_bot.<

5


http://rootbridges.blogspot.com
http://rootbridges.blogspot.com
http://rootbridges.blogspot.com
http://rootbridges.blogspot.com
http://rootbridges.blogspot.com

OXFORD

Introduction to

Bloengineering

Edited by

S. A.Berger, W.Goldsmith
and E.R. Lewis




OXFORD

Introduction to

Bloengineering

Edited by
S. A.Berger, W.Goldsmith
and E.R. Lewis

Third sentence:

“In the use of the term
bioengineering in this
book we exclude

genetic engineering;
that is, the systematic
design of phenotypes
by manipulation of
genotypes.”
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Study Participants

Drew Endy (chair)

Patrick Lincoln (co-chair)
Richard Murray (co-chair)
Franoes Armnold (Caltech)
Ralph Baric (UNC)

Roger Brert (TMS])

Raob Carlson (U.Washington)
Jim Collins {BU)

Lynn Conway (Michigan)
Ron Davis (Stanford)

Mita Desa (NSF)

Eric Fisenstodt (DARPA)
Stephanie Forrest (U.New Mexioo)
Seth Goldstein (CMU)
Homme Hellinga {Duke)
Tom Kall (UC Berkeley)

Jay Keading (UC Berkeley)

Doug Kirkpetrics (DARPA)
Tom Knight (MIT)

Bl Mark (SRI)

John Muligan (Blue Heron)
Radhika Negpal (MIT/Harvard)
Carl Pabo (Sengama)
Randy Rettberg (MIT)

Pam Silver (Harvargd)

Brad Smith (Johns Hopkins)
Christing Smolke (Caltech)
Gerry Sussman (MIT)

Jack Thorpe (1SAT)

Claire Tormnlin (Stanford)
Jeff Way (Lexigen)

Chris Webb (Stanford)

Ron Wesss (Princeton)

Erik Winfree (Caltech)

Free .PDF of full briefing via DOI 1721.1/38455

Study participants induded representatives from universities, industry, and
government. Participants provided expertise in basic biological research,
biclegical systems modeling, DNA synthesis, device analysis & design, self-
assembly, systems analysis & design, computer science, electrical
engineering, engineering theory, and biological security. Rich Entlich and
other staff provided expert organizational support throughout the study.

The study held three workshops and four executive meetings:

o Unas wWwhN e

Cctober 23-24% (2002) at the Beckman Center in Irvine, CA
March 3-4% (2003) at SRI, Inc. in San Mateo, CA (workshop)
March 24-25" at Norton's Woeds in Cambridge, MA (workshop)
April 10-11" at IDA in Alexandria, VA

May 29-307 at Caltech in Pasadena, CA (workshop)

August 18-22" at Johnsen House in Weeds Hele, MA

7. October 8" in Alexandria, VA

The following related events cccurred while the study was underway:

1. IBEA contracted by DOE to synthesize a bacterial genome (11/02)
[see Mtto:/fwaw.bicenergysits org/mews htmi]

2. MIT conducts Synthetic Biolegy Lab (1/03)
[see Btto:/ fwed. mit edu/newsoffice/nr 2003 Binkers.beml)

3. Caltech anncunces Center for Biclogical Cirauit Design (3/03)
[see nttp://waw, eas caltech, edu/engenious /win03/coas pdf )

4. EU NEST proposes Synthetic Biology research pregram (8/03)
[see fp//fip.cordis lufputy/nest/docs/syrthetic_bioogy. pdf]

5. Lawrence Berkeley Lab creates Dept. of Synthetic Biology (8/03)
[see http:/fwaw, bl gov/LBL-Programs/ pbe/news/newsletter) )

2003 Synthetic Biology Study
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2003 Synthetic Biology Study technical approaches to risk management; new training programs and
professional societies will serve an important role in creating a cadre of engineers
who can work in biclegy and who will serve as a strategic resource for responding
to natural and engineered biclogical threats.
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Our charge was, “to specify enabling technologies that, if
developed, would provide a general foundation for the
engineering of biology and make routine the creation of
synthetic biological systems that behave as predicted.”
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Our charge was, “to specify enabling technologies that, if
developed, would provide a general foundation for the
engineering of biology and make routine the creation of
synthetic biological systems that behave as predicted.”

Our stated findings were, “Three specific process
improvements that should be pursued now are: (i)
component standardization, (ii) substrate and component
abstraction, and (iii) design and fabrication decoupling.”

Free .PDF of full briefing via DOI 1721.1/38455 o
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DNA Construction = #1 Tech. of 21st Ctry.

From absract

information to
physical, living
DNA designs.

2004: 10,000 bp
2010: 1,000,000 bp
2016: 100 million?




Why does DNA synthesis matter?




Why does DNA synthesis matter?

Molecular Systems Biology (2005) doi:10.1038/msb4 100025 molecular
© 2005 EMBO and Nature Publishing Group  All rights reserved 1744.£4292/05 systems
www.molecularsystemsbiology.com h|0|0gy

Refactoring bacteriophage T7

Leon Y Chan'?, Sriram Kosuri®® and Drew Endy**

' Department of Biology, Massachusetts Institute of Technelogy, Cambridge, MA, USA and ? Division of Biological Engineering, Massachusetts Institute of Technology,
Cambricge, MA, USA

* These authors contributed equally to this work

* Corresponding author. Division of Bickgical Engineering, Massachusetts Institute of Technology, 68-580, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Tel: — 1617 258 5152; Fax: + 1 617 253 5865; E-mail: endy@mit.edu

Received 15.7.05; accepted 23.7.05

Natural biological systems are selected by evolution to continue to exist and evolve. Evolution likely
gives rise to complicated systems that are difficult to understand and manipulate. Here, we redesign
the genome of a natural biological system, bacteriophage T7, in order to specify an engineered
surrogate that, if viable, would be easier to study and extend. Our initial design goals were to
physically separate and enable unique manipulation of primary genetic elements. Implicit in our
design are the hypotheses that overlapping genetic elements are, in aggregate, nonessential for T7
viability and that our models for the functions encoded by elements are sufficient. To test our initial
design, we replaced the left 11 515 base pairs (bp) of the 39937 bp wild-type genome with 12179 bp of
engineered DNA. The resulting chimeric genome encodes a viable bacteriophage that appears to
maintain key features of the original while being simpler to model and easier to manipulate. The
viability of our initial design suggests that the genomes encoding natural biological systems can be
systematically redesigned and built anew in service of scientific understanding or human intention.
Molecular Systems Biology 13 September 2005; doi:10.1038/msb4100025

Subject Categories: synthetic biology —@ Ev %R

Keywords: bacteriophage T7; synthetic biology; refactor 11




To build section alpha, we first cloned parts 5,6,7,8, 12, 13, 14, 15, 16, 18, 20,22, and 24 into pSB104.We
cloned part | | into pSB2K3.We cloned each part with its part-specific bracketing restriction sites
surrounded by additional BioBrick restriction sites.VWe used site-directed mutagenesis on parts 6, /7, 14, and
20 to introduce the sites Ul, U2, U3, and U4, respectively. Our site-directed mutagenesis of part 20
failed.We used site-directed mutagenesis to remove a single Eco0109I restriction site from the vector
pUBI 19BHB carrying the scaffold Fragment 4.We cloned part |5 into this modified vector.We then cloned
scaffold Fragment 4 into pREB and used serial cloning to add the following parts: 7,8, 12, |3, 14, 16, 18, 20,
22,and 23.We digested the now-populated scaffold Fragment 4 with Nhel and Bcll and purified the
resulting DNA.Next, we cloned parts 5 and 6 into pUBI |9BHB carrying scaffold Fragment 3.VVe used the
resulting DNA for in vitro assembly of a construct spanning from the left end of T7 to part 7.To do this,
we cut wild-type T7 genomic DNA with Asel, isolated the 388 bp left-end fragment, and ligated this DNA
to scaffold Fragment 2.VVe selected the correct ligation product by PCR.We fixed the mutation in part 3
(Al) via a two-step process. First, PCR primers with the corrected sequence for part 3 were used to
amplify the two halves of the construct to the left and right ends of part 3. Second, a PCR ligation joined
the two constructs.Ve added scaffold Fragment 3 to the above left-end construct once again by PCR
ligation as described above.We repaired the mutation in part 4 (A2,A3, and R0.3) following the same
procedure as with part 3.We used a right-end primer containing an Mlul site to amplify the entire
construct, and used the Mlul site to add part 7.We used PCR to select the ligation product, digested the
product with Nhel, and purified the resulting DNA.We isolated the right arm of a Bcll digestion of wild-
type T7 genomic DNA and used ligation to add the populated left-end construct and the populated
Scaffold Fragment 4.We transfected the three-way ligation product into IJ1127.We purified DNA from
liquid culture lysates inoculated from single plaques.We used restriction enzymes to digest the DNA and
isolate the correct clones.Next, we added part || via three-way ligation and transfection. Because the
restriction sites that bracket part 9 (Rsrll) also cut wild-type T7 DNA, we needed to use in vitro assembly
to add this part to a subsection of section alpha.To do this, we used PCR to amplify the region spanning
parts 5—12 from the refactored genome.We cut the PCR product with Rsrll and ligated part 9.We used
PCR to select the correct ligation product; this PCR reaction also added a Sacll site to the fragment.We
digested the PCR product with Sacl and Sacll and cloned onto the otherwise wild-type phage. Lastly, we
used the Sacll site to clone part 10 onto the phage. 12
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|. Coordinate work
among parties

2. Coc?rdlnate work ~ ' E.g.,some quarry rock,
over time =i others assemble
structure

3. Enable the otherwise §
impossible ' E.g,we could fix a
£ broken rock today,
~2000 years later
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|. Physical genetic layout (leading to...)

2. Functional composition

3. Metrology inside cells
(measurement and reference materials)

4. Representations




“There 1s no such thing as a standard (biological) component,

because even a standard component works differently

depending on the environment. The expectation that you can

type in a (DNA) sequence and can predict what a (genetic)

circuit will do 1s far from reality and always will be.”
Caltech Professor, NY Times, 2006
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“There 1s no such thing as a standard (biological) component,

because even a standard component works differently

depending on the environment. The expectation that you can

type in a (DNA) sequence and can predict what a (genetic)

circuit will do 1s far from reality and always will be.”
Caltech Professor, NY Times, 2006

“... reusing the same well-characterized RBS
(ribosome binding site) sequence for different proteins, a

common practice, 1s not likely to work reliably.”
MIT Professor, Nature Biotechnology, 2009
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Abstraction to manage complexity ?7%&#

Systems = One or more devices encoding
a human defined function(s).

8 Bit Synchro.
Counter

ADstraction barrier

DNA Inversion Devices = One or more parts encoding a
Data Latch human defined function(s).

“TATAGGGAGA DNA = Primary sequence and mater@
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