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Association of NA drought with cold tropical Pacific - La Nina -
SST anomalies is typical - has worked for more than a century

Soil moisture anomalies - ‘observations based’ and from global climate model
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Tree ring reconstructions of Palmer Drought Severity Index allow
determination of SST-drought link back into 19th Century
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GOGA SSTA (global mean removed) and GHCN station precipitation
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North American droughts of
the 20thC fit into a
consistent global pattern

-Widespread drought in
northern and southern
mid-latitudes

- In the SST, the
common feature is a
cold equatorial Pacific -
La Nina
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The Civil War
drought
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The same global
hydroclimate
regimes are seen
in the mid to late
19thC North

American droughts

SST from ships (1856 on), rain from
gauges (few in 19thC)
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1948-1957 Precipitation Anomalies (wrt 1856-1928 climatology)
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1932-1939 Precipitation Anomalies (wrt 1856-1928 climatology)
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1930s Dust Bowl drought
only one that went along
with soil erosion and dust
storms due to farming
practices.

Based on SCS wind erosion
maps convert portions of
model grid boxes to bare soil

Model created dust storms,
the dust interacted with
radiation intensifying the
drought and moving it north

Dust Bowl was a coupled human-
natural disaster .... with clear
lessons for the future
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North America has an

excellent network of tree

ring records of past
hydroclimate.

The Southwest and,
especially, the Plains
experienced a series of

multidecadal megadroughts

before the 17th Century.

The southeast U.S. has
been getting wetter for a
millennium.

Cook et al. 2013 .

SW PDSI
{

|
|
‘
!

I I
1000 1100 1200

! \
1300 1400

I I
1500 1600

CP PDSI
T

\
1700

I
1800

I
1900

!
2000

| |H1 1y '| |

‘.» A "
O AR O

l“
Iy

|
|| [
[

S
-

I |
1000 1100 1200

! \
1300 1400

| I
1500 1600

\
1700

I
1800

|
1900

!
2000

NW PDSI
T
4
37
2
1 ‘ \
| I { M
ofid "", PR LIS i i ly | Il | |’ M
TN 1 ‘\I‘l‘ | Ul ] | l“ | ‘ H]‘
Al | ‘
-2 '
-3
—4 | | | | | | | | | |
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
SE PDSI
. ’
27
1

VAT

T amy
\‘ T ‘\

WU WAy
1

- ||‘,‘ ".H‘ ‘ It

-3 L
1000 1100 1200

I | !
1300 1400 1500

1600

I
1700

!
1800

!
1900

L
2000

Southwest

Plains

Northwest

Southeast

F1c. 3. Area averaged PDSI from the NADA for the SW (a), CP (b)1, %W (c), and SE (d)
regions, as shown in Figures 1 and 2. Green and brown bars are the original data, and dark
black lines are a smoothed version of the time series using a 10-year LOWESS spline.

Friday, February 15, 13



The Medieval megadroughts were often pan-continental and of
multidecadal duration. Causes?
- Very long timescale SST variations, possibly solar or volcanic-forced?

- Internal atmosphere variability?
NADA V2
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The only analogs of the Dust Bowl spatial pattern were
the Medieval megadroughts during the 800-1500A.D.
period - also a time of dune activity. 13
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Force model ensemble with tropical Pacific SST
reconstructed for 1320-1462 from Cobb et al. (2003)
Palmyra coral (mixed layer ocean elsewhere).
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14
active dunes turned Medieval droughts into megadroughts
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Historical droughts caused by patterns of tropical
SST anomalies.

Medievel megadroughts are of unknown origin -
though tropical SST forcing remains the leading
hypothesis (Graham et al. 2007, 2010; Seager et
al. 2007, 2008; Burgman et al. 2010, Seager and
Burgman 2011, Feng et al. 2008, Oglesby et al.
2011).

GHG-driven global warming is introducing a
new type of North American drought driven by
global changes in the hydrological cycle and
atmospheric circulation (that do not depend
on patterns of SST change).

15
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Greenhouse warming will impact patterns of

brecipitation across the planet
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Southwest N P-E (2021-2040) - (1951-1999)
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CMIP5 model

projected
changes in P-E

relative to
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CMIP5 model

projected change in

Colorado River runoff

for 2021-2040 relative
to 1950-2000

Tree ring
reconstructed
Colorado River flow
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Near term human-induced flow reduction roughly equivalent to
the temporary drop in the 12th Century megadrought
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Mechanisms of modeled hydroclimate change
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Tropical wetting, subtropical drying strongly influenced by rising g and
intensified moisture convergence and divergence. Mean circulation change -
weaker tropical circulation, Hadley Cell expansion - also important as well as

TE intensification and poleward shift. “Thermodynamics mediated.’
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Mechanisms of modeled hydroclimate variability

MMM - Natural Variability
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For internal model (and observed) variability - mostly
ENSO - thermodynamic contribution is weak and P-E is
‘Dynamics dominated’.

Friday, February 15, 13



Using mechanisms to understand recent
hydroclimate variations in atmospheric data sets

Observations-based atmospheric data sets - the 20th Century
Reanalysis (20CR) - support the models’ indication that natural
variability of P-E is ‘dynamics dominated’ i.e. caused by circulation
anomalies.

- Remove ENSO variability from the 20CR

- Examine trend in residual

- Compare it - and its driving mechanisms - with what models
predict the radiatively-driven trend to date should have been
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Radiatively-forced models (IPCC AR4) and ENSO-removed
20CR residual 1979-2008 trends

Zonal mean trends for 20CR residuals and AR4 MMM

\ \ |
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‘Observed’ and modeled P-E trends have some agreement

(agreement on importance of circulation change in tropics, thermodynamic contribution to
wet-get-wetter, dry-get-drier)

l.e., at the planetary scale, the hydrological cycle over is evolving as models predict it should due
to changing CO2, CH4, O3 etc.
Regional attribution much harder.
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Conclusions

Historical multiyear droughts forced by tropical Pacific (always) and
Atlantic (sometimes) multiyear SST anomalies.

Crop failure and dust storms made Dust Bowl drought worse and shifted it
northward.

Medieval megadroughts also influenced by active dunes and dust. Also
tropical SST-forced? Need better SST reconstructions for last millennium!

GHG-driven drying of southwest North America mechanistically distinct
from natural drought.

GHG-driven climate change will reduce runoff across SW including CA/
NV, Colorado headwaters, Texas by appreciable amounts in near term
future.

Global subtropical drying and expansion of subtropical dry zones is
underway consistent with IPCC AR4 model projections.
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