



# Children's Health and the Environment: Opportunities for Prevention

Leonardo Trasande, MD, MPP  
Associate Professor of Pediatrics,  
Environmental Medicine and Health Policy  
New York University

# Why are children are uniquely vulnerable?

- Pound for pound, drink more water, eat more food and breathe in more air
- Less well able to detoxify or eliminate chemicals from their bodies
- Developing organ systems are more susceptible
- Greater years of life in which chronic conditions can occur as a result of early life exposures

National Academy of Sciences 1993

# Evidence confirming child vulnerability

- Epidemic increases in chronic disease in US and other industrialized nations (asthma, childhood cancers, certain birth defects, learning/developmental disabilities)
  - Contemporaneous with widespread increase in use of chemicals

Trasande et al Dec 2011 Health Affairs

# Evidence confirming child vulnerability

- Population studies quantify strong and consistent associations with chemical exposures
- US National Academy of Sciences: 28% of developmental disabilities at least in part due to environment
- Benzene and 1,3-butadiene associated with childhood cancer
- Outdoor air pollutants are well documented to worsen and may increase risk of development of asthma

Trasande et al Dec 2011 Health Affairs

# Why have we been slow to protect children?

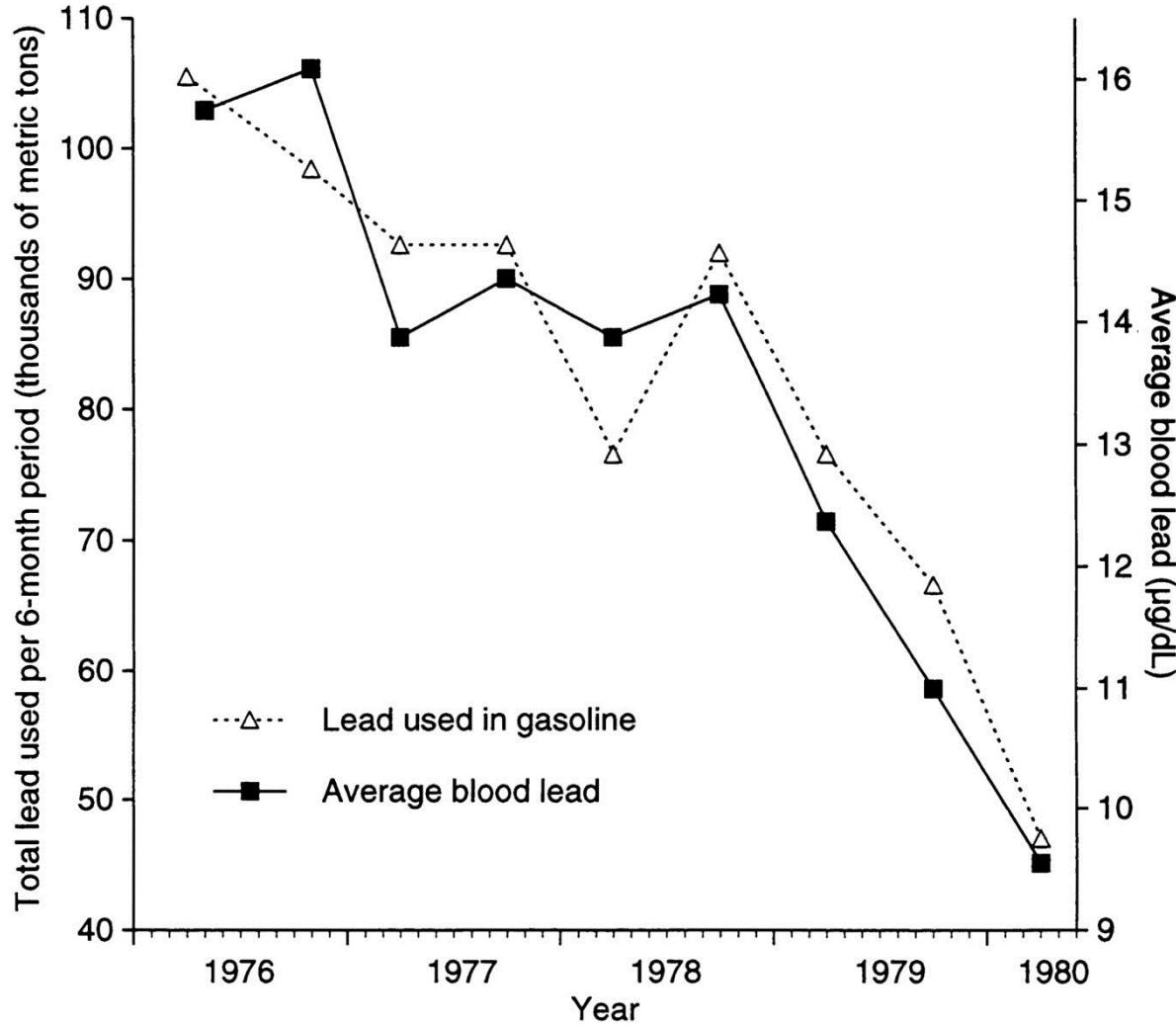
- Regulation does not require premarket testing of chemicals
  - Fewer than ½ of most produced chemicals in US have any toxicity testing data; fewer than 1/5 have data with respect to impacts on development
- Epidemiologic studies post hoc take years
- Outcomes have many potential confounders
- Criteria of reproducibility, consistency
- Uncertainty about dose-response relationships (also linear pedagogy), thresholds
- Subclinical effects are not as powerful as the Minamata or Bhopal disasters

# Failing to protect children is costly

## EXHIBIT 1

### Aggregate Costs Of Environmentally Mediated Diseases In US Children, 2008

| Environmentally attributable costs by condition | Base-case estimate    | Low-end estimate      | High-end estimate      |
|-------------------------------------------------|-----------------------|-----------------------|------------------------|
| Lead poisoning                                  | \$50.9 billion        | \$44.8 billion        | \$60.6 billion         |
| Methylmercury toxicity                          | \$5.1 billion         | \$3.2 billion         | \$8.4 billion          |
| Asthma                                          | \$2.2 billion         | \$730.0 million       | \$2.5 billion          |
| Intellectual disability                         | \$5.4 billion         | \$2.7 billion         | \$10.9 billion         |
| Autism                                          | \$7.9 billion         | \$4.0 billion         | \$15.8 billion         |
| Attention deficit hyperactivity disorder        | \$5.0 billion         | \$4.4 billion         | \$7.4 billion          |
| Childhood cancer                                | \$95.0 million        | \$38.0 million        | \$191.0 million        |
| <b>Total</b>                                    | <b>\$76.6 billion</b> | <b>\$59.8 billion</b> | <b>\$105.8 billion</b> |


SOURCE Authors' analysis.

MAY 2011 30:5 HEALTH AFFAIRS

3

Trasande and Liu May 2011 Health Affairs

# Prevention works and saves money



- Global Benefits of Phasing Out Lead From Gasoline
  - Range from \$1-\$6 trillion/year, with a best estimate of \$2.45 trillion/year. These benefits may also be expressed as 4% of global GDP.

# Solutions

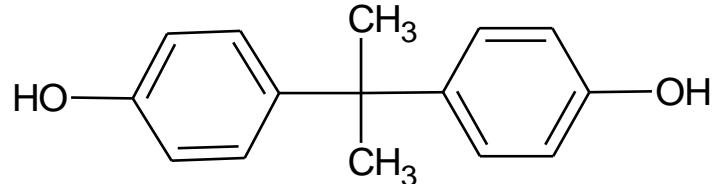
- Clinical
- Research
- Policy

# Clinical Solutions

- What is a Pediatric Environmental Health Specialty Unit (PEHSU)?
  - A resource for pediatricians, public health officials, school personnel, parents and others to get questions answered about children's health and the environment
- Goals of a PEHSU
  - Education of health professionals and others about children's health and the environment
  - Serve as a consultant to physicians, nurses, public health professionals, parents and others with questions about children's health and the environment



# Research Solutions


- Endocrine disruptors (EDs) are chemicals that have the capacity to interfere with hormonal signaling systems
- May mimic, block, or modulate the synthesis, release, transport, metabolism, binding, or elimination of natural hormones
- May temporarily or permanently alter feedback loops in the brain, pituitary, gonads, thyroid, and other components of the endocrine system

# Endocrine disrupting chemicals

- Highly heterogeneous group of molecules
- industrial solvents/lubricants and their byproducts [polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), dioxins], plastics [bisphenol A (BPA)],
- plasticizers (phthalates),
- pesticides [methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)],
- fungicides (vinclozolin), and
- pharmaceutical agents [diethylstilbestrol (DES)]."



# Bisphenol A (BPA)



- Used to manufacture polycarbonate resin
- Recently banned from baby bottles and sippy cups by US Food and Drug Administration
- Breakdown product of coatings intended to prevent metal corrosion in food and beverage containers
- In children, dietary sources constitute 99% of BPA exposure

Schechter et al. *Environ Sci Technol.* 2010;44(24):9425-9430  
Wilson et al. *Environ Res.* Jan 2007;103(1):9-20.  
Tavernise S. *New York Times*, 17 July 2012 edition.

# BPA and obesity

- Laboratory studies suggest that BPA
  - Increases fat cell size
  - Disrupt adiponectin function
  - Low-grade synthetic estrogen
    - Estrogen-testosterone balance may have sex-specific differences in influence on body mass

Masuno et al. *J Lipid Res.* 2002;43(5):676-684; Sakurai K et al. *Br J Pharmacol.* 2004;141(2):209-214;

# Association of urinary BPA with childhood obesity

- Nationally representative sample of 2838 US children
  - Urinary BPA measured by the Centers for Disease Control and Prevention
  - Divided population into four groups, lowest to highest
  - Children with lowest levels of BPA: 10.3% obese
  - Children with higher levels of BPA: 20.1-22.1% obese
  - Linear association of BPA with standardized measure of Body Mass Index accounting for age and gender
  - Levels of other phenols found in sunscreens and soaps not associated

Trasande et al JAMA 2012; 308(11):1113-21

# Other chemicals with data suggesting role in obesity, diabetes and cardiovascular disease

- Phthalates

- Found in shampoos, soaps, lotions, flooring, food wraps

Janesick et al 2011, Trasande et al 2013

- Perfluoroalkyl chemicals

- Used in nonstick cooking, carpets and upholstery, microwave popcorn bags

Halldorsson et al 2012

- Polycyclic aromatic hydrocarbons

- Breakdown product of fuel burning, also food contaminant

Rundle et al Am J Epidemiol 2012

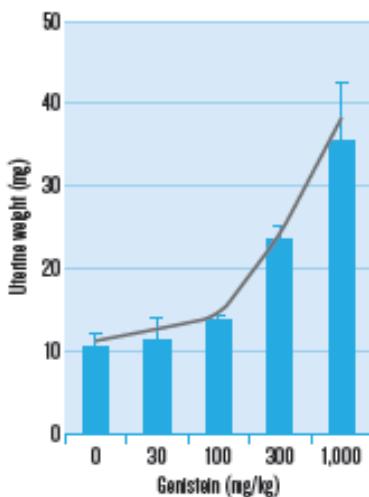
- Proximity to oil refinery in Jeddah associated with increased BP

Trasande et al Env Research 2015

- Polybrominated diphenyl ethers

- Flame retardants found in furniture, electronics

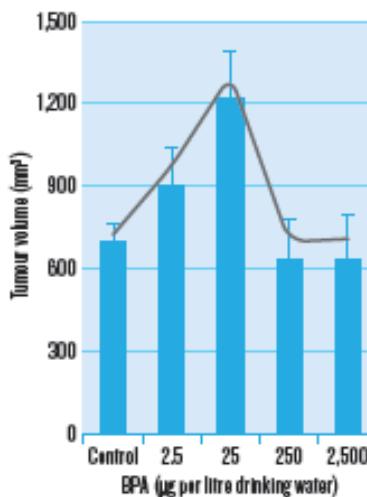
Lim et al Diabetes Care 2008


# Non-linearity and non-monotonicity

## CURIOUS CURVES

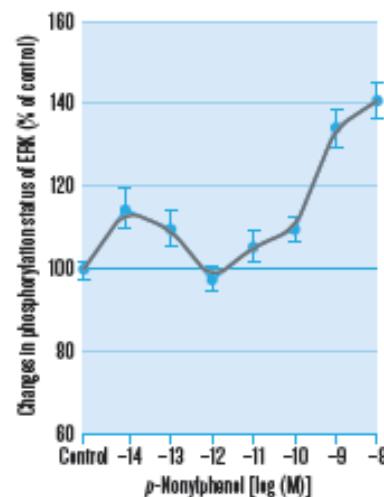
Researchers have found that many endocrine-disrupting chemicals do not generate the standard monotonic dose-response curves seen for other types of compound.

### MONOTONIC CURVE


In some cases, dose and response increase together. The plant oestrogen genistein, for instance, causes the mouse uterus to increase in weight.

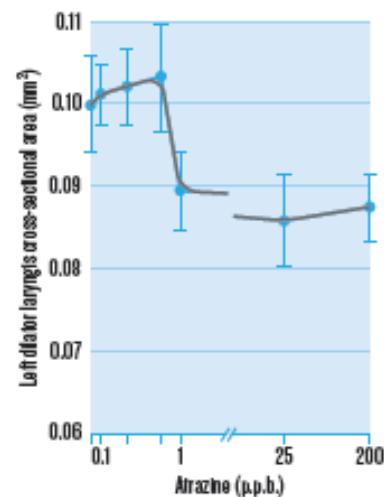


SOURCE: Ohta, R. et al. *J. Toxicol. Sci.* 37, 879-889 (2012)


### NON-MONOTONIC CURVES

Mice exposed to moderate doses of bisphenol A develop the largest tumours. Moderate and high doses are thought to induce tumour-cell proliferation, but high doses also trigger cell death.

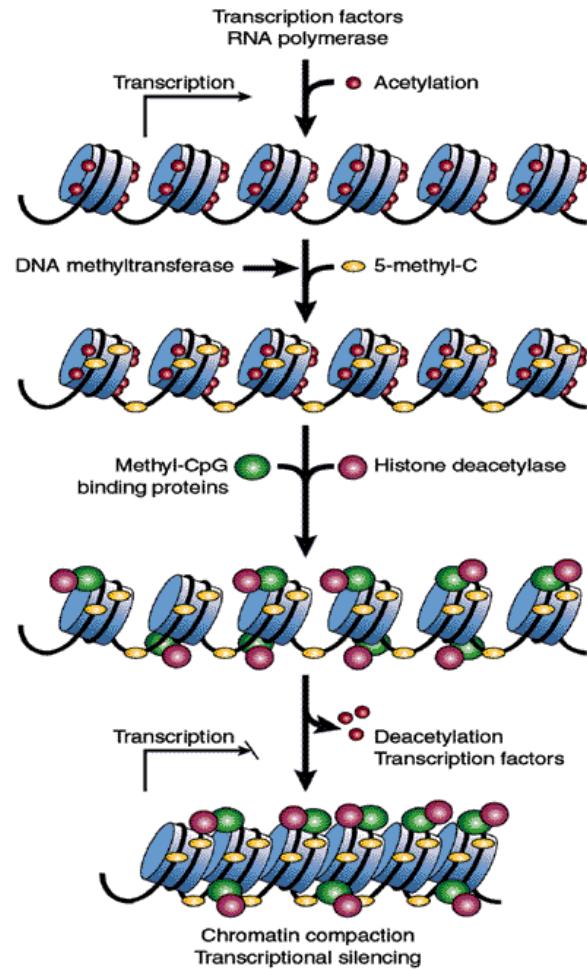



SOURCE: Jenkins, S. et al. *Environ. Health Perspect.* 119, 1604-1609 (2011)

The oestrogen mimic *p*-nonylphenol stimulates the ERK cell-signalling pathway at low and high doses. Interactions with hormone receptors and other membrane proteins explain the complex shape of the curve.



SOURCE: Bulayeva, N. N. & Watson, C. S. *Environ. Health Perspect.* 112, 1481-1487 (2004)

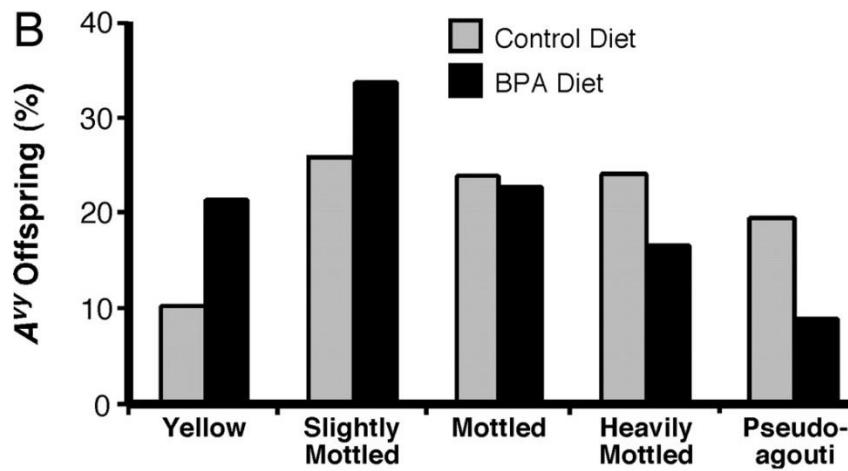

Above a certain dose, the herbicide atrazine causes the larynx muscle to shrink in male frogs. But the effect does not increase at higher doses.



SOURCE: Hayes, T. A. et al. *Proc. Natl. Acad. Sci. USA* 99, 5476-5480 (2002).

Fagin Nature 2012

# Chemical exposures and epigenetics




## Maternal BPA exposure shifts offspring coat color distribution toward yellow.

A



B



Dolinoy D C et al. PNAS 2007;104:13056-13061

PNAS

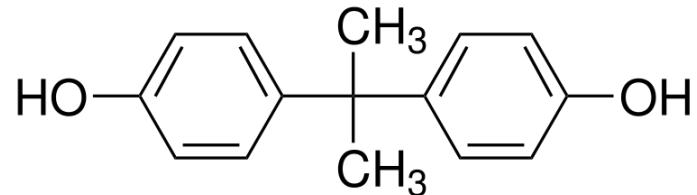
# Policy action on BPA

- BPA banned in baby bottles and sippy cups
- But not in other food uses

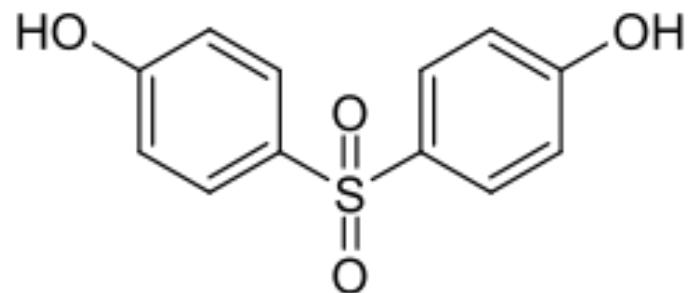
# Costs of BPA exposure

- 12,404 cases of childhood obesity
- 33,863 cases of newly incident coronary heart disease
- Estimated social costs of \$2.98 billion in 2008

Trasande Health Affairs 2014


# Benefits and costs of replacing BPA

- Potential cost of one BPA alternative, oleoresin = \$0.022 per can
  - 100 billion aluminum cans are produced annually
  - $100 \text{ billion} \times \$0.022 = \$2.2 \text{ billion}$
- Potential benefit of replacing BPA with lining free of health effects = **\$1.74 billion**
  - Does not include other effects (cognitive, asthma, breast cancer)
- Sensitivity analyses suggest as high as \$13.8 billion


Trasande Health Affairs 2014

# BPS replacing BPA?

- Emerging evidence suggests replacement of BPA and BPS
- Similar, weak estrogen like BPA
- Disrupts signaling of estrogen in animal studies
- Does not degrade as easily in seawater



Bisphenol A



Bisphenol S

Liao et al Environ Sci Technol. 2012 Jun 19;46(12):6860-6.  
Liao et al Environ Sci Technol. 2012 Jun 19;46(12):6515-22.  
Grignard et al Toxicol In Vitro. 2012 Aug;26(5):727-31.  
Vinas and Watson EHP doi:10.1289/ehp.1205826  
Danzl et al Int J Environ Res Public Health. 2009 Apr;6(4):1472-84

# The increasingly global chemical picture

- OECD estimates in 2020: industrializing nations will account for 33% of global chemical demand and 31% of production
  - compared with 23 percent and 21 percent, respectively, in 1995
  - industrializing nations are expected to lead in the manufacture of high production volume chemicals
  - occurs against a backdrop of insufficient infrastructure to protect public health and the environment

# Summary

- Clinical resources can be very useful to guide prevention and management of environmental exposures in children
- Substantial research is ongoing to better understand the complex relationships of environmental chemicals to disease, especially endocrine disruptors
- Regulation is needed to proactively prevent chronic childhood diseases that are increasing both in industrializing and industrialized countries
  - Benefits of improved health may be greater than costs of safer alternatives

# Thanks!

- Collaborators
  - Teresa Attina, Howard Trachtman, Yongzhao Shao (NYU School of Medicine)
  - Jan Blustein (NYU Wagner)
  - Adam Spanier (Penn State Hershey Medical Center)
  - Elaine Urbina (Cincinnati Children's)
  - Sheela Sathyanarayana (University of Washington)
  - Vincent Jaddoe (Erasmus University Medical Center)
  - Magdy Shamy, Mamdouh Khoder, Mansour Alghamdi, Ibrahim Shabaj (King Abdulaziz University)
- Funding
  - NIEHS (R01ES022972, R24TW009562)
  - NIDDK (R01DK100307)
  - CDC/NIOSH (U01OH010394)