Overview of Chemical, Bioengineering, Environmental, and Transport Systems

Dimitrios Papavassilou for JoAnn S. Lighty (Division Director)
Program Director, Fluid Dynamics
VISION OF CBET

• CBET supports fundamental engineering research that involves:
 – the transformation of matter by chemical, thermal, or biological means
 – the exchange of mass, energy, or momentum

• With the goals that:
 – The quality and length of life will be maximized
 – Humans will live sustainably on earth

http://www.cnh-lcms.org/uploads/hands_earth_many2_280x240.JPG
Over 75% of the community is:

Chemical Engineering, 24%

Mechanical Engineering, 24%

Bioengineering/Biomed Engineering, 15%

Civil/Environmental Engineering, 13%

West VA Univ.

JBEI/Jay Keasling
• Unsolicited Proposals
 – ALL programs in ONE window, with a deadline of Nov. 5th, 2014 and October 20 thereafter.
 – See program descriptions for information regarding the emphasis, etc.
 – Grant Opportunities for Academic Liaison with Industry (GOALI) deadline the same
 – PLEASE be aware that GPG guidelines are followed and proposals will be RWR if they are found noncompliant.
Early-Concept Grants for Exploratory Research (EAGER)
- Approval by program officer only

RAPID
- Grants for rapid response with regard to data, facilities, or equipment
 - Example: Dear Colleague Letter on Ebola Virus, NSF 15-006
 - Contact program officer for approval

Workshops and Supplement (to existing grants)
- Contact program officer

CAREER: Faculty Early Career Development
- ENG award size increased to $500K
- Usually due in July but see website
- CBET CAREER Webinar
 - Over 300 people in attendance each day
 - Agenda included mock review panel
 - Check the website for posting of the Webinar
Budget percentages within core programs:

- **CAREER ~13.5%**
- **EAGER/RAPID ~ 3%**
- **GOALI ~ 2.4%**
- **Workshops/Conferences ~ 0.8%**
- **Supplements ~ 0.8%**
Integrative Strategies for Understanding Neural and Cognitive Systems
- Letter of Intent, 12/10/2014
- Full Proposal, 01/26/2015

Neuroengineering and Brain-Inspired Concepts and Designs: includes technologies for imaging, sensing, recording, or affecting real-time brain activity and behavior; computing paradigms; brain-computer interfaces; **Individuality and Variation**
NSF Catalyzing A Research Topic:
What is a new way to think of cooling for power plants?
- Requires fundamental basic research and real-world knowledge

NSF/EPRI Funding
- 4 NSF / 3 EPRI / 3 joint
- 3 years, $3M NSF/$3M EPRI

Became an ARPA-E topic in the latest solicitation for $30 million
WORLD'S POPULATION BOOMS

>9 BILLION by 2050

Larger, more urban and richer population

Food production will need to increase ~60%

Energy production will need to increase ~50%

Water demand will increase ~30%

FOOD

2010 2050

ENERGY

2010 2050

WATER

Image credit: http://www.aquate.com
National Science Foundation

CBET ORGANIZATIONAL
CHART

Seventeen programs across four clusters

Division Director
JoAnn Lighty

Deputy Division Director
Susan Kemnitzer

Chemical and Biochemical Systems

- 1401 - Catalysis and Biocatalysis
 Bob McCabe

- 1417 – Chemical and Biological Separations
 Rose Wesson

- 1403 – Process and Reaction Engineering
 Maria Burka

Bioengineering and Engineering Healthcare

- 1491 - Biotechnology and Biochemical Engineering
 Friedrich Srienc

- 5345 - Biomedical Engineering
 Thanassis Sambanis

- 7236 - Biophotonics
 Leon Esterowitz

- 7909 - Nano-Biosensing
 Rajakkannu Mutharasan

- 5342 – General and Age Related Disabilities Engineering
 Alex Leonessa

Environmental Engineering and Sustainability

- 7644 - Energy for Sustainability
 Gregory Rorrer

- 1440 - Environmental Engineering
 William Cooper

- 1179 - Environmental Health & Safety of Nanotechnology
 Nora Savage (Acting)

- 7643 - Environmental Sustainability
 Bruce Hamilton

Transport, Thermal, and Fluid Phenomena

- 1407 – Combustion and Fire Systems
 Ruey-Hung Chen

- 1443 Fluid Dynamics
 Dimitrios Papavassiliou

- 1414 - Interfacial Processes and Thermodynamics
 Nora Savage (Acting)

- 1415 - Particulate and Multiphase Processes
 William Olbricht

- 1406 - Thermal Transport Processes
 Ruey Chen (Acting)
Reactors, Vessels, Control Systems, Scalability

Feedstocks

Process & Reaction Engineering

Products

A

Separation Needed: Purity, Co-products, Recovery

B

Chemical & Biological Separations

Catalysts: Inorganic, Organic, Biological Needs: Yield, Selectivity, Reaction rate

Catalysis & Biocatalysis
National Science Foundation

CBS INVESTMENT CATEGORIES
FY14

Unsolicited: 66%
CAREER: 13%
GOALI: 12%
EaGER/RAPID: 5%
Workshops/Conferences: 2%
Supplements: 1%
External Funding Collaborations: 1%

**CBET Overall ~3%
Seventeen programs across four clusters

1401 - Catalysis and Biocatalysis
Bob McCabe

1417 – Chemical and Biological Separations
Rose Wesson

1403 – Process and Reaction Engineering
Maria Burka

1491 - Biotechnology and Biochemical Engineering
Friedrich Srienc

5345 - Biomedical Engineering
Thanassis Sambanis

7236 - Biophotonics
Leon Esterowitz

7909 - Nano-Biosensing
Rajakkannu Mutharasam

5342 – General and Age Related Disabilities Engineering
Alex Leonessa

1440 - Environmental Engineering
William Cooper

1179 - Environmental Health & Safety of Nanotechnology
Nora Savage (Acting)

7643 - Environmental Sustainability
Bruce Hamilton

1407 – Combustion and Fire Systems
Ruey-Hung Chen

1443 - Fluid Dynamics
Dimitrios Papavassiliou

1414 - Interfacial Processes and Thermodynamics
Nora Savage (Acting)

1415 - Particulate and Multiphase Processes
William Olbricht

1406 - Thermal Transport Processes
Ruey Chen (Acting)
Technology Advancement

Biotechnology & Biochemical Engineering
Biomedical Engineering
General and Age-Related Disabilities Engineering

Microbial chemical factories
Corn starch
Artemisinin chemicals

Vasculogenesis in tissue constructs

Nano-Biosensing, Biophotonics

Diagnostics & Sensing
BEH INVESTMENT CATEGORIES
FY14

$39.9M

23%**

68%

1% 2%

Unsolicited
CAREER
GOALI
EaGER/RAPID
Workshops/Conferences
Supplements
External Funding Collaborations

**CBET Overall ~13.5%
Seventeen programs across four clusters

Chemical and Biochemical Systems
- 1401 - Catalysis and Biocatalysis
 - Bob McCabe

- 1417 – Chemical and Biological Separations
 - Rose Wesson

- 1403 – Process and Reaction Engineering
 - Maria Burka

Bioengineering and Engineering Healthcare
- 1491 - Biotechnology and Biochemical Engineering
 - Friedrich Srienc

- 5345 - Biomedical Engineering
 - Thanassis Sambanis

- 7236 - Biophotonics
 - Leon Esterowitz

- 7909 - Nano-Biosensing
 - Rajakkannu Mutharasan

- 5342 – General and Age Related Disabilities Engineering
 - Alex Leonessa

Environmental Engineering and Sustainability
- 7644 - Energy for Sustainability
 - Gregory Rorrer

- 1440 Environmental Engineering
 - William Cooper

- 1179 - Environmental Health & Safety of Nanotechnology
 - Nora Savage (Acting)

- 7643 Environmental Sustainability
 - Bruce Hamilton

Transport, Thermal, and Fluid Phenomena
- 1407 – Combustion and Fire Systems
 - Ruey-Hung Chen

- 1443 Fluid Dynamics
 - Dimitrios Papavassiliou

- 1414 - Interfacial Processes and Thermodynamics
 - Nora Savage (Acting)

- 1415 - Particulate and Multiphase Processes
 - William Olbright

- 1406 - Thermal Transport Processes
 - Ruey Chen (Acting)
Environmental Impacts

Environmental Engineering

Environmental Health & Safety of Nanotechnology

Energy for Sustainability

Environmental Sustainability

Sustainable Technologies
EES had a large RAPID component for WV chemical spill
National Science Foundation

CBET ORGANIZATIONAL CHART

Seventeen programs across four clusters

<table>
<thead>
<tr>
<th>Chemical and Biochemical Systems</th>
<th>Bioengineering and Engineering Healthcare</th>
<th>Environmental Engineering and Sustainability</th>
<th>Transport, Thermal, and Fluid Phenomena</th>
</tr>
</thead>
<tbody>
<tr>
<td>1401 - Catalysis and Biocatalysis</td>
<td>1491 - Biotechnology and Biochemical Engineering</td>
<td>7644 - Energy for Sustainability</td>
<td>1407 - Combustion and Fire Systems</td>
</tr>
<tr>
<td>Bob McCabe</td>
<td>Friedrich Srienc</td>
<td>Gregory Rorrer</td>
<td>Ruey-Hung Chen</td>
</tr>
<tr>
<td>1417 – Chemical and Biological Separations</td>
<td>Thanasssis Sambani</td>
<td>1440 Environmental Engineering</td>
<td>1443 Fluid Dynamics</td>
</tr>
<tr>
<td>Rose Wesson</td>
<td></td>
<td>William Cooper</td>
<td>Dimitrios Papavassiliou</td>
</tr>
<tr>
<td>1403 – Process and Reaction Engineering</td>
<td>7236 Biophotonics</td>
<td>1179 - Environmental Health & Safety of Nanotechnology</td>
<td>1414 - Interfacial Processes and Thermodynamics</td>
</tr>
<tr>
<td>Maria Burka</td>
<td>Leon Esterowitz</td>
<td>Nora Savage</td>
<td>Nora Savage (Acting)</td>
</tr>
<tr>
<td>1409 - Nano-Biosensing</td>
<td>7909 Nano-Biosensing</td>
<td>7643 Environmental Sustainability</td>
<td>1415 - Particulate and Multiphase Processes</td>
</tr>
<tr>
<td>Rajakkannu Mutharasan</td>
<td>Rajakkannu Mutharasan</td>
<td>Bruce Hamilton</td>
<td>William Olbricht</td>
</tr>
<tr>
<td>5342 – General and Age Related Disabilities Engineering</td>
<td>5342 – General and Age Related Disabilities Engineering</td>
<td>7643 Environmental Sustainability</td>
<td>1406 - Thermal Transport Processes</td>
</tr>
<tr>
<td>Alex Leonessa</td>
<td>Alex Leonessa</td>
<td>Bruce Hamilton</td>
<td>Ruey Chen (Acting)</td>
</tr>
</tbody>
</table>
Fluid Flow & Heat Transfer

- **Fluid Dynamics**
 - Thermal Transport Processes

- **Particulate & Multiphase Processes**
 - Interfacial Processes & Thermodynamics

- **Highly Concentrated Particle Environment**

- **Combustion & Fire Systems**

Images and Credits:
- Natural-convection-heat-sink-fluid-WBG.jpg
- Dept ME, Iowa State Univ.
- Thomas Peacock, MIT

Links:

Title:
- National Science Foundation
- TRANSPORT, THERMAL, AND FLUID PHENOMENA (TTF)

Copyright:
- © Dept ME, Iowa State Univ.
- © Thomas Peacock, MIT
National Science Foundation

TTF INVESTMENT CATEGORIES FY14

72% Unsolicited
16% CAREER
1% GOALI
2% EaGER/RAPID
1% Workshops/Conferences
1% Supplements
7% External Funding Collaborations

**CBET Overall ~3%
Program Objectives:
• Support combustion science and technology for sustainable growth, as well as basic combustion and fire sciences

Areas of Emphasis Include:
• Fundamental flame/fire phenomena and chemistry
• Pollutant emission from combustion and fire
• Manipulation of flame/fire for human benefits
Program Objectives:

- Support research that can lead to applications with significant societal/technological impact
- Support experimental and theoretical research projects, from the molecular to the macroscopic scale

Areas of Emphasis Include:

- Turbulence and flow control, instabilities, fluid mechanics at interfaces and surfaces
- Bio-inspired fluid mechanics
- Flow of complex fluids, new fluid materials
- Micro- and nano-fluidics
Program Objectives:

• Support fundamental research in interfacial phenomena, mass transfer and molecular thermodynamics

Areas of Emphasis Include:

• Directed- and self-assembly of novel surfactant-based films, structures, and composites, including polymers
• Bio-molecular interfaces and nanodelivery systems
• Polymer micro- and nano-structures
• Molecular thermodynamics and mass transfer
Program Objectives:
• Support theoretical, computational and experimental research
• Support discovery of innovative processes for particulate-based advanced materials

Areas of Emphasis Include:
• Multiphase flow phenomena and microstructured fluids
 • Including biological systems
• Granular materials
• Colloidal and nanoscale particulates
• Prediction of macroscopic properties of fluids based on microstructural dynamics
Program Objectives:

• Promote the fundamental understanding and application of thermal transport at different scales

Areas of Emphasis Include:

• Control of thermal/flow transport processes in devices/systems and in materials processing & manufacturing
• Novel simulation and diagnostics of flow and heat transport, bridging across scales
• New materials/fluids/processes resulting in improved properties and performance