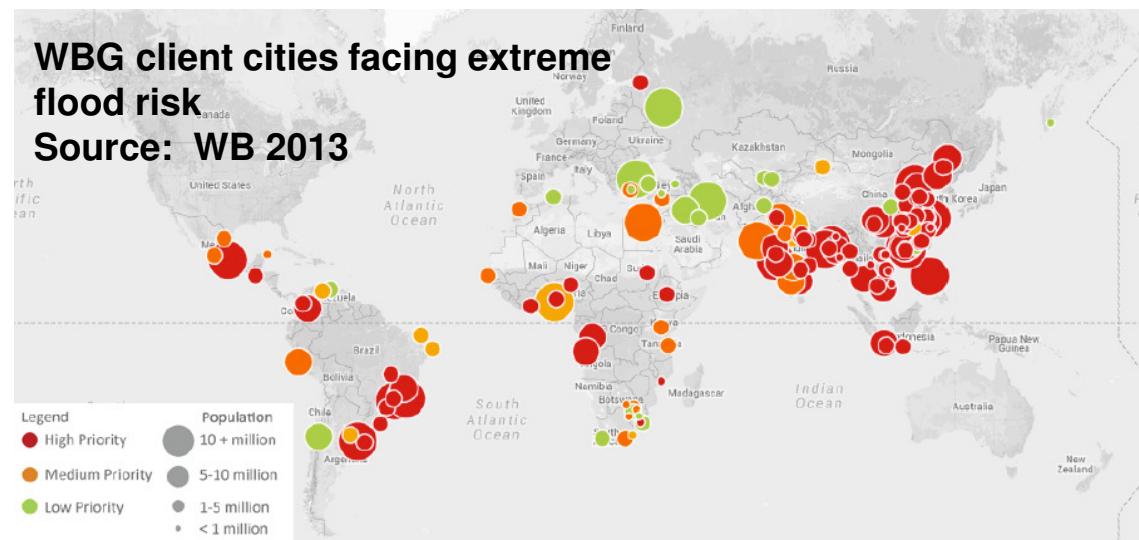
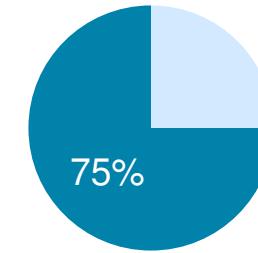
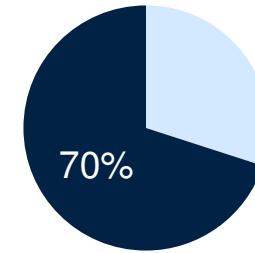
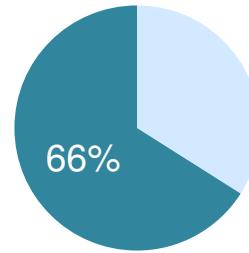


Pathways to Urban Sustainability: Challenges and Opportunities

Third Committee Meeting
National Research Council's Committee on Pathways to Urban Sustainability
Chattanooga, Tennessee
July 28, 2015

Stephen A. Hammer, PhD
Manager, Climate Policy
World Bank Group

The Drive for Low Carbon, Climate Resilient Cities

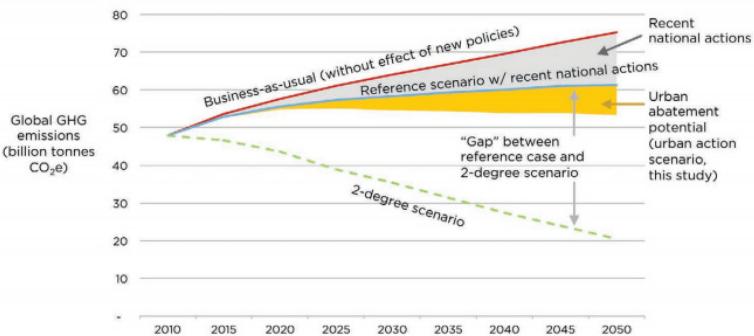
Climate change and rapid urbanization are the dual challenges of the 21st century.

Urban share of global:

A Changing Policy Landscape Increasingly Focused on Cities

New Climate Economy report

Emerging Cities will play a significant role in growth of the global economy and carbon emissions to 2030


URBAN GROUP	PROJECTED BASE GDP GROWTH FROM 2012-2030, USD TRILLIONS	PROJECTED BASE CASE EMISSIONS GROWTH ¹ FROM 2012-2030, MEGATONNES OF CO ₂	PROJECTED POPULATION IN 2030, BNS	PER CAPITA IN 2030, TONNES OF CO ₂ PER PERSON
Emerging Cities e.g. Bangalore, Kunming, Puebla	16	3230	~1.3	~7
Small Urban Areas Inc. villages, small towns, peripheral industrial areas pop. < 0.5 million	16	1220	~2.2	~4.6
Established Cities e.g. Stuttgart, Minneapolis, Stockholm, Hiroshima	11	390	~0.4	~12.1
Global Megacities e.g. Beijing, New York, London, Rio de Janeiro	10	1050	~0.6	~7.1
Total growth	~ 52	~ 5,890	Total population in 2030 ~ 4.5	
Share of world growth	~ 87%	~ 65%	Share of world pop. in 2030 ~ 55%	

Note: Energy assumptions are consistent with the IEA's Current Policies scenario. GDP figures are based on 2012 prices and exchange rates. Small urban areas are a highly diverse segment covering cities in both developed and developing countries. Estimates for this segment, especially for per capita emissions, are subject to significant levels of uncertainty and should be treated as indicative.

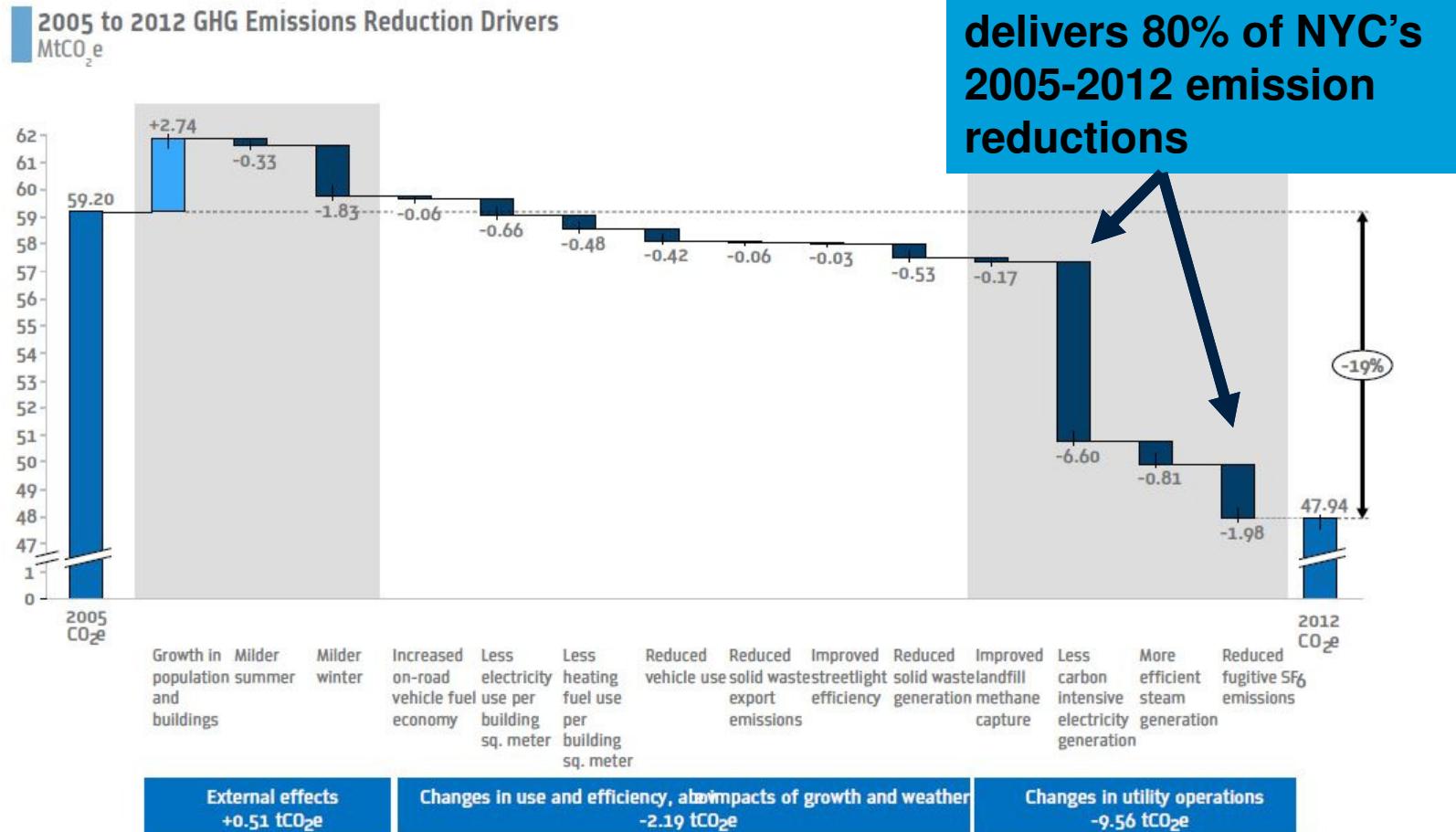
Source: Analysis by LSE Cities and Oxford Economics; data from the Oxford Economics Global 750 Cities database. Small Urban Areas

Bloomberg Philanthropy study

Figure 1. Urban action could help deepen the aggregate, global ambition of current national pledges¹

¹ Chart sources (other than this study): BAU and "reference scenario" differ only in their assessment of energy-related CO₂ emissions: BAU uses IEA's 6DS scenario, reference uses 4DS⁶; for other gases, both scenarios use the average of BAU scenarios in the IPCC AR5 scenario database; 2-degree pathway from Rogelj et al.

NYC Climate Summit (2014)

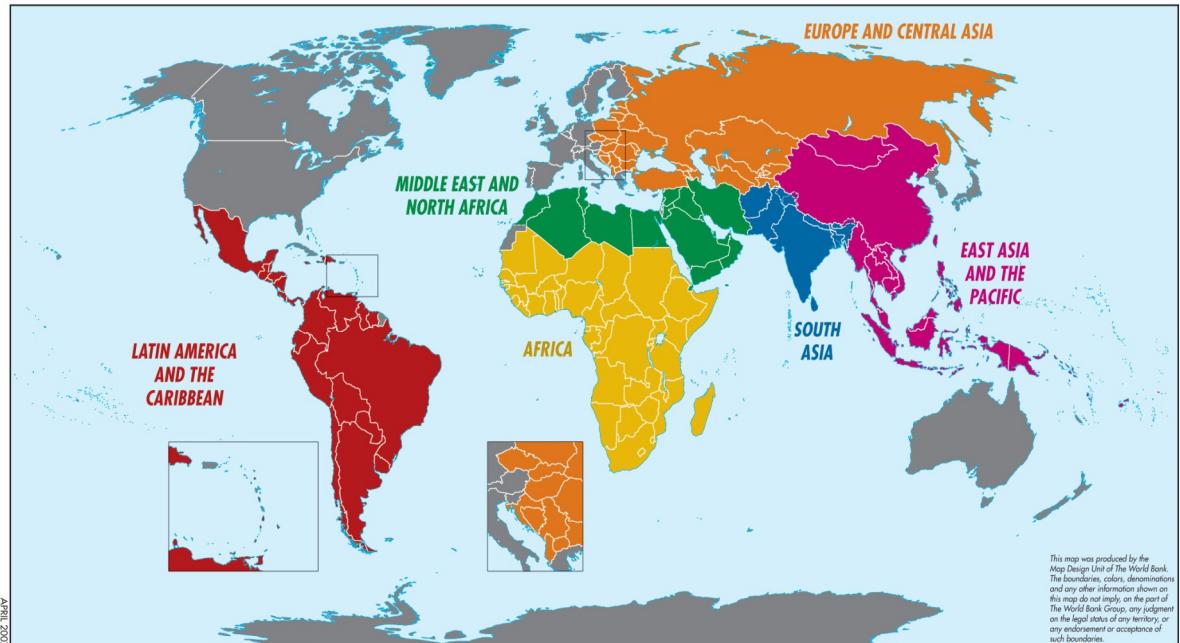

- Compact of Mayors
- City Climate Finance Leadership Alliance
- Urban Resilience Accelerator
- Energy Efficiency Accelerator
- Transportation Accelerator

Lima-Paris Action Agenda COP21 (2015)

Impediments to Local Action

- Hard to sell “climate” action...easier to sell quality of life, cost savings, improved business climate
- Limited local capacity to act
 - Policy control powers
 - Key infrastructure system ownership outside of city control
- Sovereign policies limiting city financial wherewithal
 - Limited ability to directly apply for climate funds or issue municipal bonds
 - Cash transfer practices/policies
- Limited local knowledge/capacity
- High development and transaction costs given scale of projects in many cities

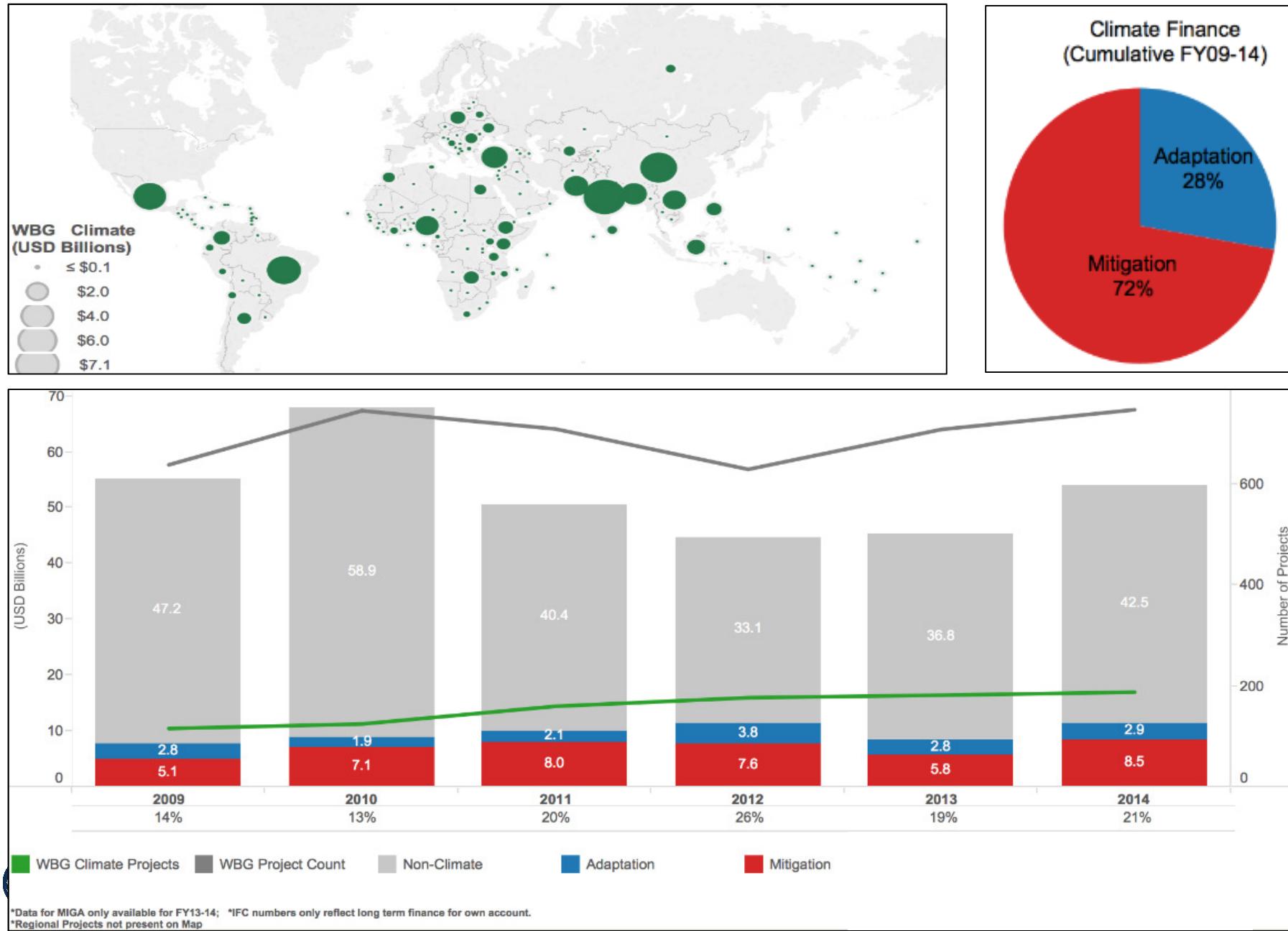
Who has greatest capacity to influence circumstances on the ground?



Source: NYC Mayor's Office

World Bank Group engagement on urban sustainability and climate

World Bank operations


Twin goals:

- eliminate extreme poverty by 2030
- boost shared prosperity

“A solutions Bank”:

- Project financing of infrastructure and services
- Technical assistance/advisory services
- Knowledge creation and dissemination

Climate Finance at WBG (USD Billions, FY09-14)*

WBG corporate initiatives to boost climate investment levels

- Mandatory GHG emission screening for all projects (urban sector delayed, due in FY16)
- Resilience screening on IFC and IDA projects
- Mandatory climate change conversation during preparation of new multi-year country partnership framework agreements

World Bank Group Urban Climate & Sustainability Initiatives

WBG urban initiatives we could talk about

IFC “cities” program

- EDGE tool (energy efficient buildings)

IFC + Treasury expanding focus on green bonds

- Potential for a city-focused green bonds school?

ESMAP City Energy Efficiency Transformation Initiative

- \$9 million for EE investments and capacity building in cities (Brazil, Pakistan, Macedonia, Ukraine, China, South Africa)

Region/Country-specific programs

- Rio Low Carbon City Program
- Turkey Sustainable Cities Programs

GEF IAP Sustainable Cities program

- \$145 million for 28 cities in 11 countries
- Global technical assistance platform

**Supporting local action through
improved analytics and human
resource capacity**

Improved Scenario Planning

Introduction

Setup

Inventory

Benchmarking

Actions

Results

Implementation

Basic Data

Advanced Data

City Basic Data

City Characteristics	Value	Units
City Name	Pilot City	N/A
Country	Mexico	N/A
City Region	Central America	N/A
Proxy City (Select your city if available)	Culiacan	N/A
Climate Type	Wet	N/A
Baseline Year	2015	N/A
Horizon Year 1	2020	N/A
Horizon Year 2	2030	N/A
Horizon Year 3	2040	N/A
Population of Pilot City in 2015	1,009,035	Number of people
Number Jobs in Pilot City in 2015	635,692	Number of jobs

The user inputs or imports data to build a baseline picture of city energy demand and GHG emissions

Growth Rate

Select One:

- Option 1: Use National Population Growth Rate for Urban Areas of Mexico (Source: UN 2010)
- Option 2: Enter City-Specific Growth Rate Data

[See Proxy Values](#)

Community Greenhouse Gas Emissions Inventory Data

Select One:

- Option 1: Use Tool-Generated Greenhouse Emissions Estimates
- Option 2: Enter GPC-Compliant Emissions Inventory Data

Enter Community Emissions Inventory Data

[Link to Inventory Input Page](#)

Private Sector Building Inventory Data

Select One:

- Option 1: Use Tool-Generated Building Inventory Estimates
- Option 2: Enter City-Specific Building Inventory Data

If data is not available, the user can rely on build-in proxy data for their city/country.

Introduction

Setup

Inventory

Benchmarking

Actions

Results

Implementation

Feasibility Assessment

Building Energy
- Private Sector

Existing Residential

Residential - Single Family

Baseline Technology:

Proposed Technology:

Percentage of SF Households:

?

Residential - Multi-Family

[View/Change Assumptions?](#)

Baseline Technology:

Proposed Technology:

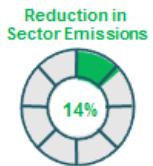
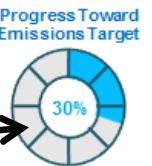
Percentage of MF Households:

?

Residential - Informal

[View/Change Assumptions?](#)

Baseline Technology:



Proposed Technology:

Percentage of Informal Households:

?
Intervention Total

Benefits

The user considers intervention in six sectors, establishing the estimated penetration or deployment rate. The impacts (energy demand, energy spending, GHG emissions) appear instantaneously on the right

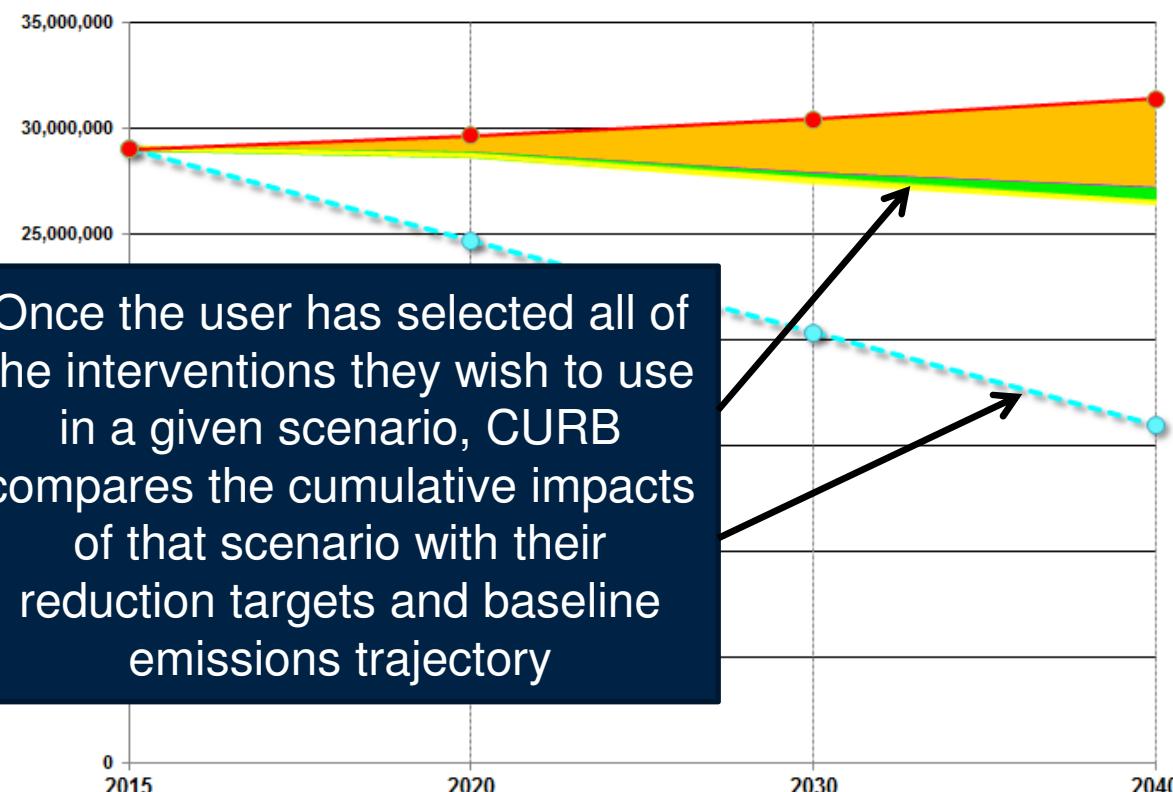
Electricity Reduced (kWh/Year)	% SF Lighting Energy Reduced
42,113,337	32%

Cost (\$US/Year)	Cost Savings (\$US/Year)	Payback Period (Years)
	\$7,580,401	

Emissions Abatement (Tonnes CO ₂ e/Year)	Electricity Reduced (kWh/Year)	% MF Lighting Energy Reduced
17,220	77,476,801	64%

Cost (\$US/Year)	Cost Savings (\$US/Year)	Payback Period (Years)
	\$13,945,824	

Emissions Abatement (Tonnes CO ₂ e/Year)	Electricity Reduced (kWh/Year)	% Informal Lighting Energy Reduced
0	0	0%


Cost (\$US/Year)	Cost Savings (\$US/Year)	Payback Period (Years)
	\$0	

Emissions Abatement (Tonnes CO ₂ e/Year)	Electricity Reduced (kWh/Year)	% Residential Lighting Energy Reduced
26,580	119,590,138	41%

Cost Cost Savings Payback Period

Overall Carbon Abatement

Tonnes CO ₂ e/Year	Emissions Metric
2015 Baseline Emissions Level	
29,011,337	Baseline
2020 Emissions Levels	
29,681,351	Reference Case Forecast
15%	Abatement Target (%)
24,659,637	Target Level
28,720,124	Achieved w/ Interventions
4,060,488	Achievement Gap
2030 Emissions Levels	
30,411,970	Reference Case Forecast
30%	Abatement Target (%)
20,307,936	Target Level
27,528,291	Achieved w/ Interventions
7,220,355	Achievement Gap
2040 Emissions Levels	
30,411,970	Reference Case Forecast
30%	Abatement Target (%)
20,307,936	Target Level
27,528,291	Achieved w/ Interventions
7,220,355	Achievement Gap

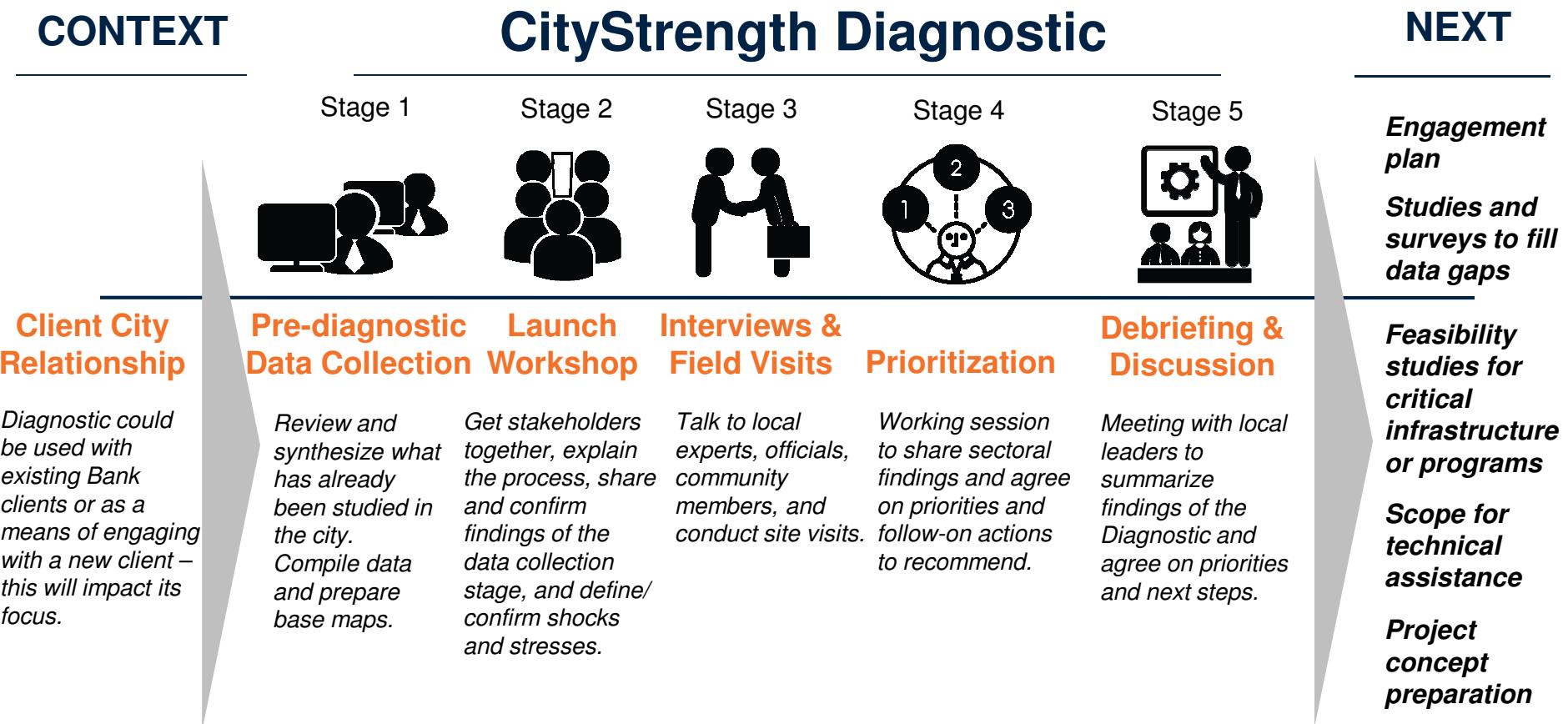
Legend:

	National Actions
	Building Energy - Private
	Building & Facility Energy -

	Solid Waste
	Wastewater
	Transportation

Set 2020 Target 15%

Set 2030 Target 30%



CITY STRENGTH

RESILIENT CITIES PROGRAM

Stages of the CityStrength Diagnostic

Sectoral Modules

DRM & Climate Change

Energy

Environment

Public Health

ICT

Logistics and Supply Chains

Solid Waste

Municipal Finance

Local Economy

Water & Sanitation

Urban Development

Community & Social Protection

Transportation

Education

Sample Guiding Questions -- Energy

Topic	Guiding Question	Relevance to Resilience
Institutional Capacity	Who manages the city's energy planning? What is the city's degree of influence/ control over power utilities?	Coordination: Close coordination among utilities and between utilities and the city can improve planning and accelerate response in case of disruption.
Finance	Is contingency financing available for energy supply infrastructure and service delivery?	Redundancy: A contingency fund covers unexpected disruptions in the energy sector, accommodates sudden demand increase and/or changes in energy prices.
Generation	Is the city's energy supply diversified in terms of type (e.g., coal, solar, hydro) and source (private, public, imported)? How are different system types distributed across the city?	An energy sector with diverse technology and source can better face disruptions in energy supply. Reliable and distributed energy supply has a better chance of providing sustained, uninterrupted electricity.

Energy

A resilient energy system offers a secure supply of power that ensures the continuity of services in the event of disruptions. It has spare capacity to provide power to the city under any circumstances, especially to ensure continuity to the functioning of critical infrastructure like hospitals and government buildings. The planning for and design of energy infrastructure is informed by an integrated risk assessment taking major shocks and stresses into consideration. A resilient energy system provides access to electricity to all societal groups. Management of the energy system, including decisions regarding distribution and pricing, is inclusive of local departments and stakeholders.

“City Climate Planner” professional certification program

- Focused on building the human resource base in cities through professional development
- Multiple certifications
 - First priority = GHG emission inventory specialist
- Development and delivery with multiple international partners

CITY CLIMATE PLANNING CAPACITY DEVELOPMENT INITIATIVE

Certification Exam

City GHG Emissions Inventory Specialist

Certification Exam

City Climate Action Plan Specialist

Certification Exam

Climate Risk & Vulnerability Assessment Specialist

Miscellaneous Observations

- Massive progress in past 25 years in terms of city action and engagement
- Still room for improvement to better link the development solutions being pursued in cities with sustainability and climate realities
- Data to support evidence-based planning is a huge problem in cities
- Lingering questions about who is best positioned to deliver the fundamental system changes needed to address climate change
- Vast difference in action and capacity between developed and developing country cities
- Limited engagement to date with private sector
- Finance remains key barrier to action, requiring:
 - tough decisions about local investment priorities
 - Improved coordination with sovereign/regional authorities
 - cities to get their own house in order, improving prospects of private investment
 - improved local creditworthiness

Thank you

shammer@worldbank.org

