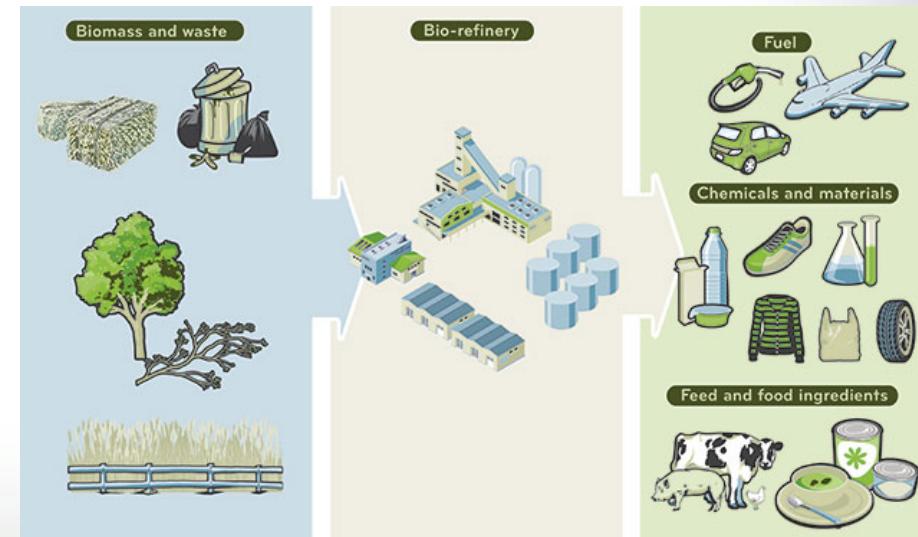


Chemical Process Indicators for Sustainability Assessment and Design


Gerardo J. Ruiz-Mercado, PhD
U.S. Environmental Protection Agency
Office of Research & Development
Cincinnati, OH USA

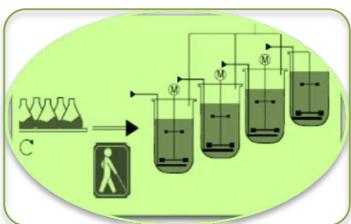
**National Academies of Sciences, Engineering and Medicine's Roundtable on
Science and Technology for Sustainability
November 12, 2015, Washington DC**

Agenda

- Sustainability and Chemical Processes
- Sustainability Indicators
- GREENSCOPE Sustainability Evaluation Tool
- GREENSCOPE Evaluation and Case Study
- Challenges, Needs, and Opportunities to Advance Sustainability at Process Level

Sustainability and Chemical Processes

Sustainability for Chemical Processes


Current environmental and social aspects that may be affected by industry

- Renewable &/or bio-based products & feedstocks: meet economic, social, and environmental benefits

Join efforts to incorporate sustainability principles

- Efficient renewable material transformation
- Less energy consumption and waste (nonhazardous) generation
- Clean processes, optimum social and economic benefits
- Life cycle assessment considerations

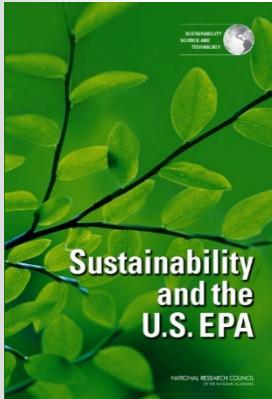
Sustainability from the lab to the manufacturing plant

- Inexpensive starting materials
- High-yield and easy isolation of pure products

Quantitative Sustainability Assessment

Qualitative Approaches

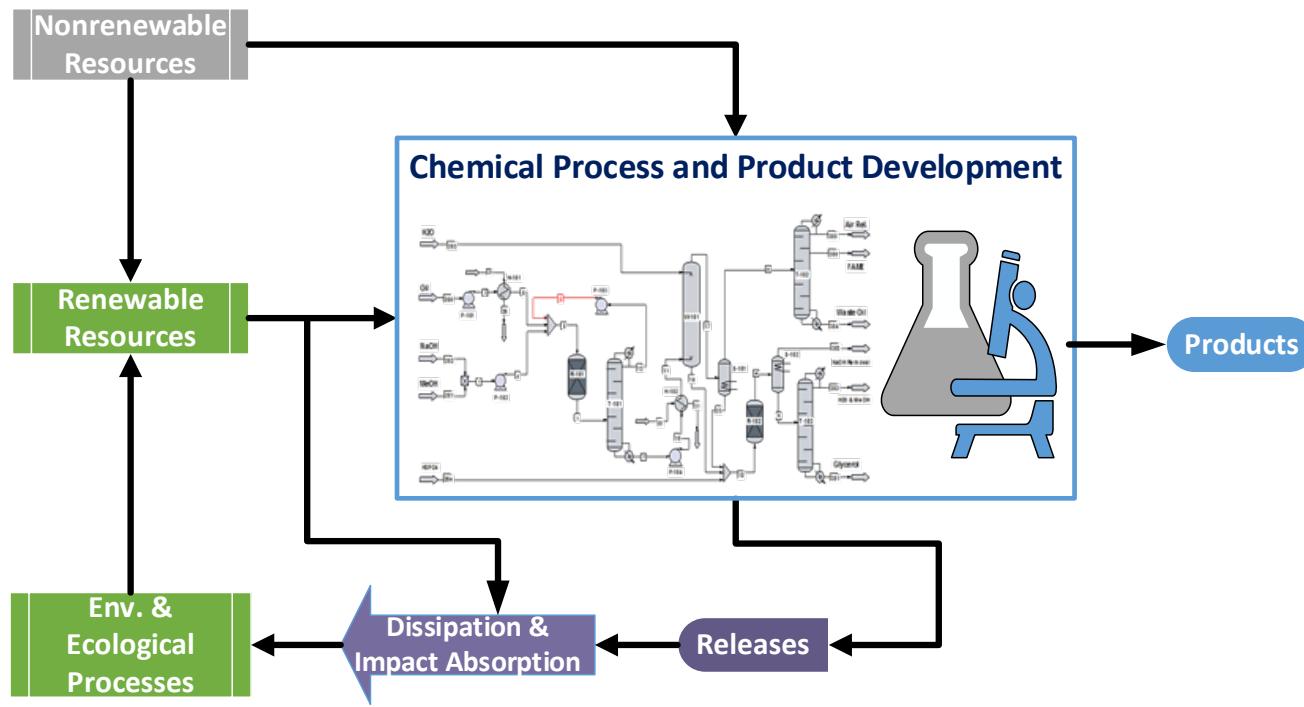
Apply all of them?
Levels of implementation?
A “win-win” situation?
Multiobjective function

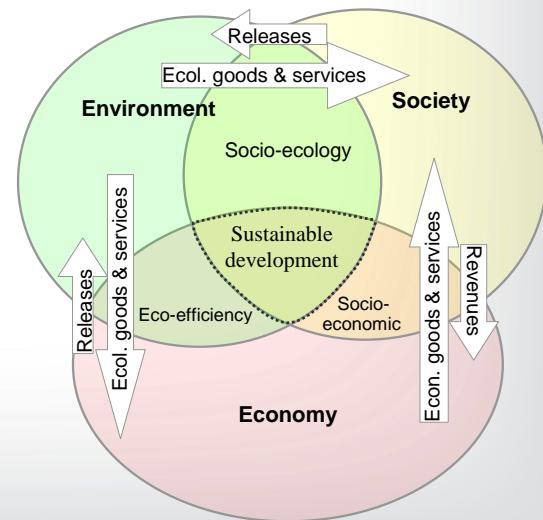

Quantitative Approaches

Is this a sustainable process?
How sustainable is it?
Realistic limitations
Scale for measuring sustainability

Sustainability Criteria

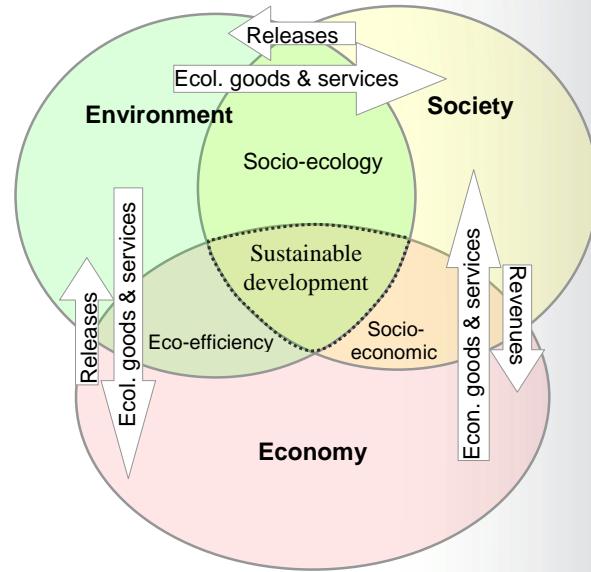
Process areas for improvements
Identification of key factors (SA)
Multi-criteria decision making
Optimal tradeoff


- NAS committee on incorporating sustainability in the U.S. EPA
 - Integrate sustainability assessment and management into management and policy decisions
 - Assessments in terms of a trade-off and synergy analysis
- From qualitative to quantitative definitions
- To evaluate & improve sustainability at early process design stages


Sustainable Process Design

Procedure

- Support decision-makers to determine whether a process is becoming more or less sustainable
 - Are we doing relatively good / bad?
- What benchmarks to use?
- How close are we to achieving absolute targets?


Sustainability Indicators



Chemical Process Indicators

- Triple dimensions of sustainable development
 - Environment, Society, Economy
 - Corporate level indicators
 - Assessment at corporate level
- Four areas for promoting & informing sustainability
 - Integrated evaluation & decision-making @ design level
 - Environmental, Efficiency, Economics, Energy (4E's)
 - Comprehensive and systems-based indicators for use in process design

The GREENSCOPE Tool

- Clear, practical, and user-friendly approach
- Monitor and predict sustainability at any stage of process design
- Currently developed into a spreadsheet tool, capable of calculating 139+ different indicators
- Stakeholders can choose which indicators to calculate
- Decision-makers can redefine absolute limits to fit circumstances

GREENSCOPE Sustainability Framework

- Identification and selection of two reference states for each sustainability indicator:
 - Best target: 100% of sustainability
 - Worst-case: 0% of sustainability
- Two scenarios for normalizing the indicators on a realistic measurement scale
- Dimensionless scale for evaluating a current process or tracking modifications/designs of a new (part of a) process

$$\% \text{ Sustainability Score} = \frac{(\text{Actual}-\text{Worst})}{(\text{Best}-\text{Worst})} \times 100\%$$

Environmental Indicators

- 66 indicators
- Health & safety hazards: operating conditions and operation failures
- Impact of components utilized in the system and releases
- Risk assessment & ecosystem services evaluation
- Integrated to life cycle assessment
- 100% sustainability, best target, is no releases of pollutants and no hazardous material use or generation
- 0% sustainability, worst cases, all inputs are classified as hazardous, and/or all generated waste for each potential *EHS* hazard is released out of the process

Environmental Indicators: Example

Safety hazard, fire explosion

$$SH_{\text{fire/explosion}} = \frac{\text{Probable energy potential for reaction with O}_2}{\text{Mass of product}}$$

$$SH_{\text{fire/explosion}} = \frac{(-\Delta H_{c,i} \times 10^{4 \times IndVal_i - 4}) m_i^{\bullet}}{m_{\text{product}}}$$

If ΔT_{flash} is known

$$IndVal_i = \begin{cases} -0.005\Delta T_{\text{flash},i} + 1.0 & \text{if } 0 < \Delta T_{\text{flash}} < 200 \\ 1 & \text{if } \Delta T_{\text{flash}} \leq 0 \\ 0 & \text{if } \Delta T_{\text{flash}} \geq 200 \end{cases}$$

Elseif R_{code} is known

$$IndVal_i = \begin{cases} 1 & \text{if } R_{\text{code}} = 12,15,17,18 \\ 0.875 & \text{if } R_{\text{code}} = 11,30 \\ 0.75 & \text{if } R_{\text{code}} = 10 \\ 0 & \text{if } R_{\text{code}} = \text{other} \end{cases}$$

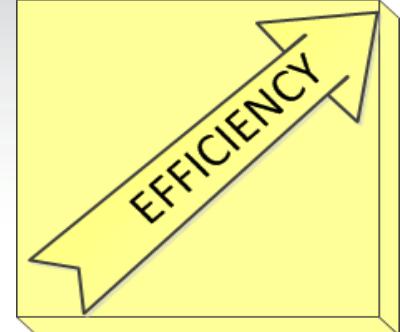
Elseif NFPA-f is known

$$IndVal_i = \begin{cases} 1 & \text{if } \text{NFPA-flamm}=4 \\ 0.833 & \text{if } \text{NFPA-flamm}=3 \\ 0.667 & \text{if } \text{NFPA-flamm}=2 \\ 0.5 & \text{if } \text{NFPA-flamm}=1 \\ 0 & \text{if } \text{NFPA-flamm}=0 \end{cases}$$

end

Sustainability value	
Best, 100%	Worst, 0%
	All combustion enthalpy
0 kJ/kg	of each process substance
	is released

ΔH_c : combustion enthalpy, kJ/kg


ΔT_{flash} : temperature difference between the standard flash point and process temperature, °C

R_{code} : Risk phrases of European community

NFPA-f: flammability hazard class

according to the U.S. National Fire Protection Agency (NFPA)

Efficiency Indicators

- 26 indicators
- Amount of materials and inputs required to generate the desired product (reaction) or complete a specific process task (e.g., separation)
- Mass transfer operations have implicit influence in the amount of energy demand, equipment size, costs, raw materials, releases, etc.
- Efficiency indicators connect material input/output with the product or intermediate generated in the process or operating unit

Efficiency Indicators: Example

Actual atom economy

$$AAE = AE \times \varepsilon$$

$$AE_i = \frac{[(\text{Molecular weight}) \times (\text{stoichiometric coefficient})]_i}{\sum_{\text{reagents}} [(\text{Molecular weight}) \times (\text{stoichiometric coefficient})]_{\text{reagent}}}$$

$$\varepsilon = \frac{\text{Mass of product}}{\text{Theoretical mass of product}}$$

$$AAE = \frac{(\beta \times MW)_{\text{product}} \times m_{\text{product}}^*}{\sum_{i=1}^l (\alpha \times MW)_{\text{reagent}, i} \times \frac{m_{\text{limit. reagent}}^*}{MW_{\text{limit. reagent}}} \times \frac{\beta_{\text{product}}}{\alpha_{\text{limit. reagent}}} \times MW_{\text{product}}}$$

Value mass intensity

$$MI_v = \frac{\text{Total mass input}}{\text{Sales revenue or value added}}$$

$$MI_v = \frac{\sum_{i=1}^l m_{m,i}^*}{S_m}$$

$$S_m = \sum_{i=1}^l m_{m, \text{product } i}^* \times C_{m, \text{product } i}$$

Sustainability value

Best, 100% Worst, 0%

1 0

m_{product}^* : mass flow of product i , kg/h

$m_{\text{limit. reagent}}^*$: input mass flow rate of the limiting reagent, kg/h

MW_i : molecular weight of the component i , kg/kmol

α_i : stoichiometric coefficient of the reagent i

β_{product} : stoichiometric coefficient of the desired product

Sustainability value

Best, 100% Worst, 0%

1 40

$m_{m,i}^*$: input mass flow rate of the limiting reagent, kg/h

annual mass flow of substance i in year m , kg/yr

S_m : total income from all sales in year m , \$

$C_{m,i}$: cost of material i in year m , \$/kg

$m_{m, \text{product } i}^*$: annual mass flow of product i in year m , kg/yr

Economic Indicators

- 33 indicators
- A sustainable economic outcome must be achieved for any new process technology or modifications
- Based in profitability criteria for projects (process, operating unit),
 - May or may not account for the time value of money
 - Benefit-cost analysis
- Indicators supported in cost criteria:
 - Processing costs: capital cost, manufacturing cost
 - Process input costs: raw material cost, utility costs
 - Process output costs: waste treatment costs

Economic Indicators: Example

Net present value

NPV = The total of the present value of all cash flows minus the present value of all capital investments

$$NPV = \sum_{m=1}^n PWF_{cf,m} \left[(S_m - COM_m - d_m)(1 - \Phi) + rec_m + d_m \right] - \sum_{m=-b}^n PWF_{v,m} TCI_m$$

$$S_m = \sum_{i=1}^l m_{m, \text{product } i}^* \times C_{m, \text{product } i}$$

$$COM_m = 0.280FCI_{L,m} + 2.73C_{OL,m} + 1.23(C_{UT,m} + C_{WT,m} + C_{RM,m})$$

$$d_m = 0.1FCI_L$$

$$rec_m = \begin{cases} C_{\text{Land}} + WC + FCI_L - \sum_{m=1}^n d_m & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

$$TCI_m = C_{\text{Land},m} + FCI_{L,m} + WC_m$$

$$FCI_L = C_{TM} = 1.18 \sum_{i=1}^u C_{BM,i}$$

$$C_{BM,i} = C_{p,i}^o F_{BM,i}$$

$$C_{OL} = 4.5N_{OL} \times (\text{annual salary})$$

$$N_{OL} = (6.29 + 31.7P^2 + 0.23N_{np})^{0.5}$$

$$N_{np} = \sum \text{Equipment}$$

Sustainability value	
Best, 100%	Worst, 0%
$NPV @ r_d =$ minimum	
$NPV @$ discount rate (r_d) = 0%	acceptable rate of return ($MARR$) = 40% for very high risk projects

n : life of the plant or equipment, yr
 $PWF_{cf,m}$: the selected present worth factor
 S_m : total income from all sales in year m , \$
 COM_m : cost of manufacture without depreciation, \$
 FCI_L : Fixed capital investment without including the land value
 d_m : depreciation charge. Here, it is assumed as 10% of the FCI_L evaluated in year m , however it can be estimated by different methods
 Φ : fixed income tax rate given by the IRS
 rec_m : salvage-value recovered from the working capital, land value, and the sale of physical assets evaluated at the end of the plant life. Often this salvage value is neglected, \$

Energy Indicators

- 14 indicators
- Different thermodynamic assessments for obtaining an energetic sustainability score
 - Energy (caloric); exergy (available); energy (ecosystem services)
- Zero energy consumption per unit of product is the best target (more products per unit of consumed energy)
- Most of the worst cases do not have a predefined value
 - They depend on the particular process or process equipment
 - The designer has to choose which value is unacceptable
 - Some worst cases can be assigned by taking the lowest scores found through comparing several sustainability corporate reports

Energy Indicators: Example

Exergy intensity

$$R_{Ex} = \frac{\text{Net exergy used}}{\text{Mass of product}}$$

$$R_{Ex} = \frac{Ex^{\bullet \text{ in}} - Ex^{\bullet \text{ lost}}}{m_{\text{product}}}$$

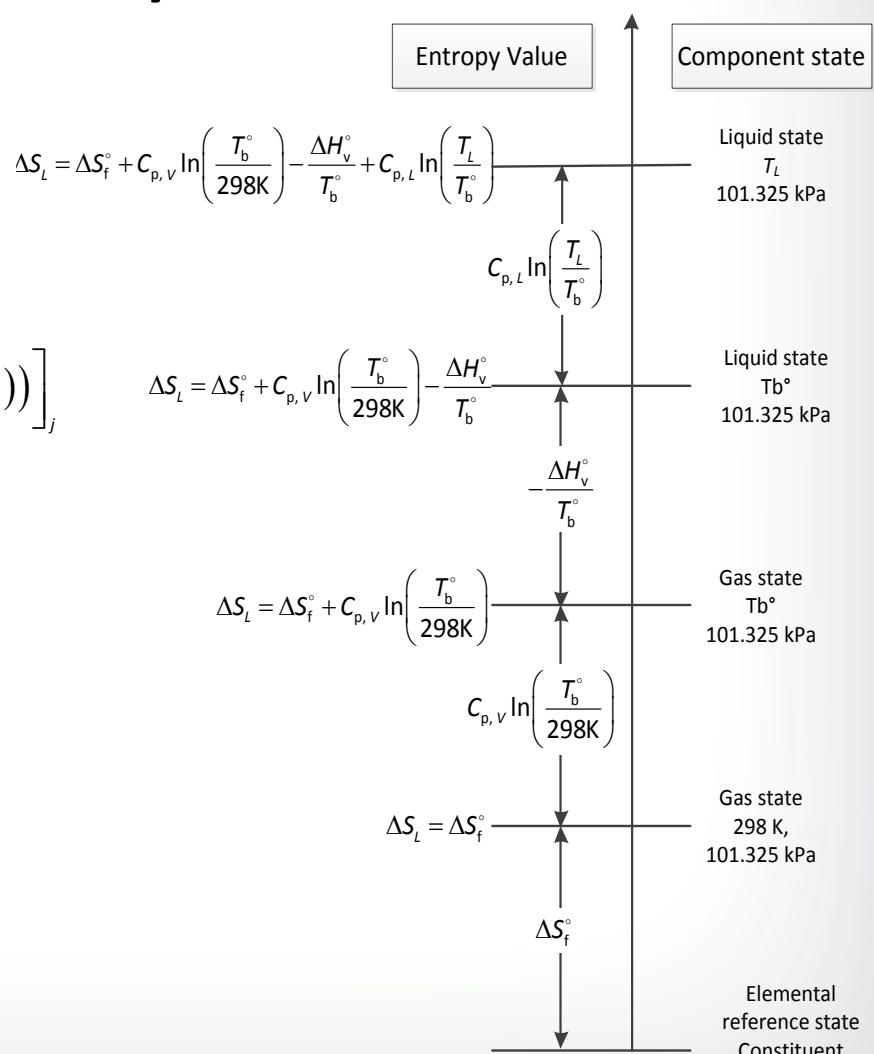
$$Ex^{\bullet \text{ in}} = [Ex^{\bullet}(\text{physical}) + Ex^{\bullet}(\text{chemical})]_{\text{input flows}} + Ex^{\bullet}(\text{work}) + Ex^{\bullet}(\text{heat})$$

$$Ex^{\bullet \text{ in}} = \sum_{j=1}^J m_j^{\bullet \text{ in}} (\Delta H - T_0 \Delta S)_j + \sum_{j=1}^J \left[\sum_{i=1}^c n_i^{\bullet} \sum_{i=1}^c (x_i Ex_i^{\bullet \text{ ch}} + RT_0 x_i \ln(x_i)) \right]_j + \sum_{k=1}^{K'} W_k^{\bullet} + \sum_{k=1}^K Q_k^{\bullet} (1 - T_0 / T_{*,k})$$

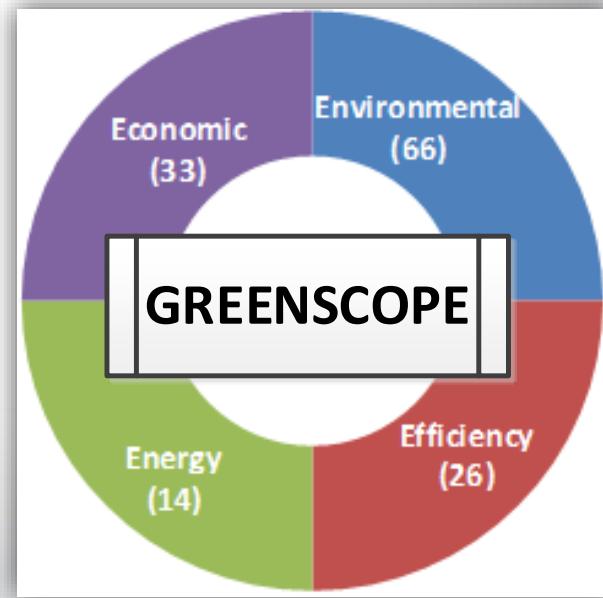
$$Ex^{\bullet \text{ lost}} = T_0 \dot{S}_{\text{generated}}$$

$$\dot{S}_{\text{generated}} = \sum_{j=1}^J m_j^{\bullet \text{ in}} \times \Delta S_j - \sum_{j=1}^{J'} m_j^{\bullet \text{ out}} \times \Delta S_j - \sum_{k=1}^K \frac{Q_k^{\bullet}}{T_0}$$

$$\Delta S_{L,j} = \sum_{i=1}^c x_{i,j} \Delta S_{L,ij} + \Delta S_{L,j \text{ mix}} \quad \Delta S_{V,j} = \sum_{i=1}^c y_{i,j} \Delta S_{V,ij} + \Delta S_{V,j \text{ mix}}$$

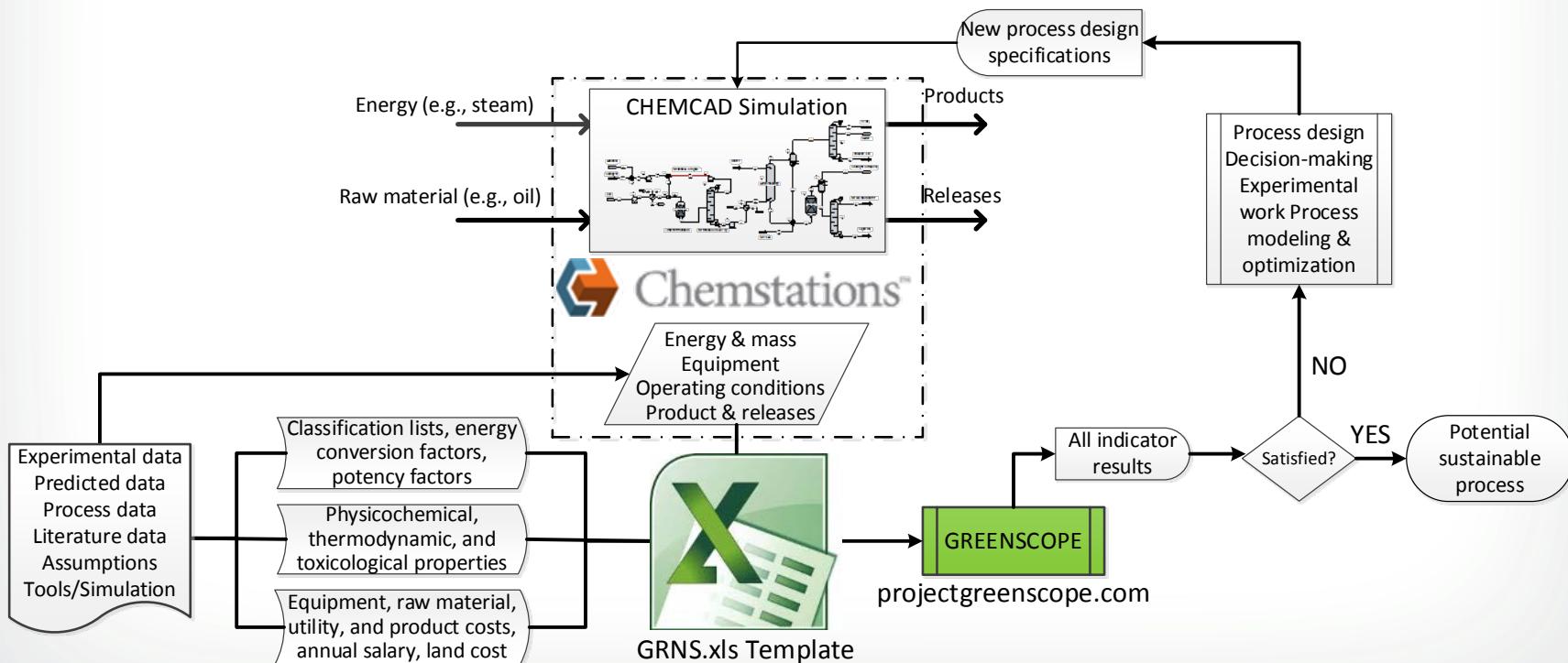

Sustainability value

Best, 100%

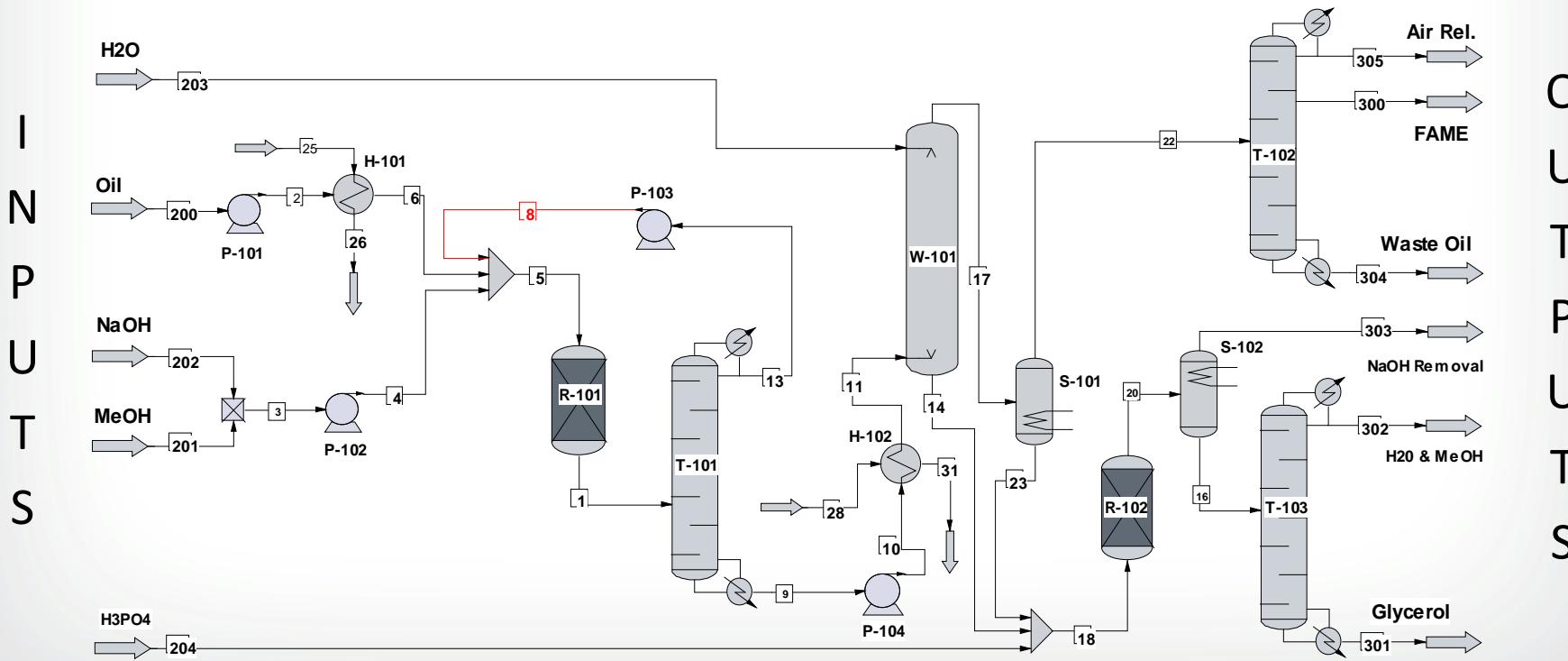

0

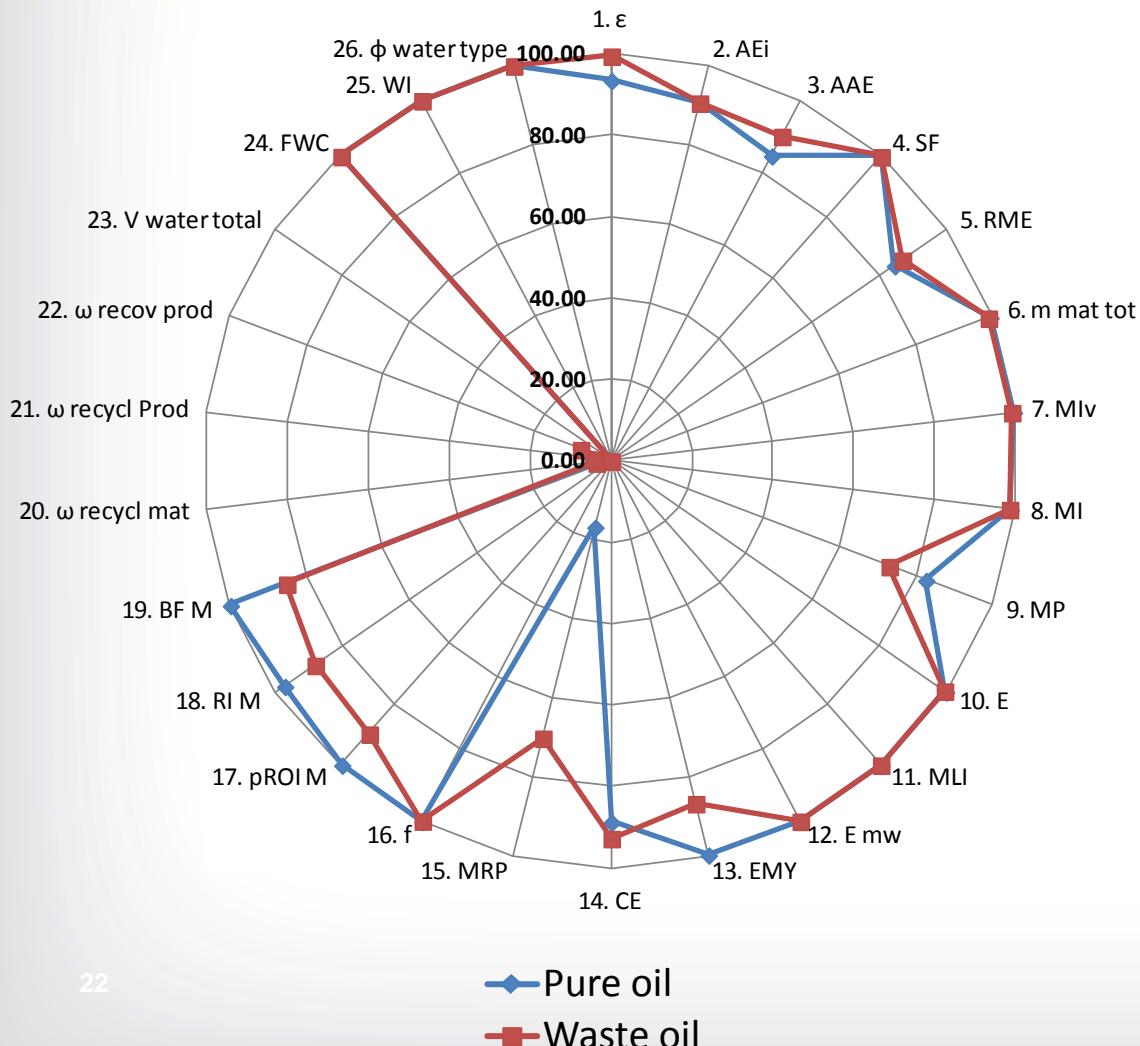
Worst, 0%

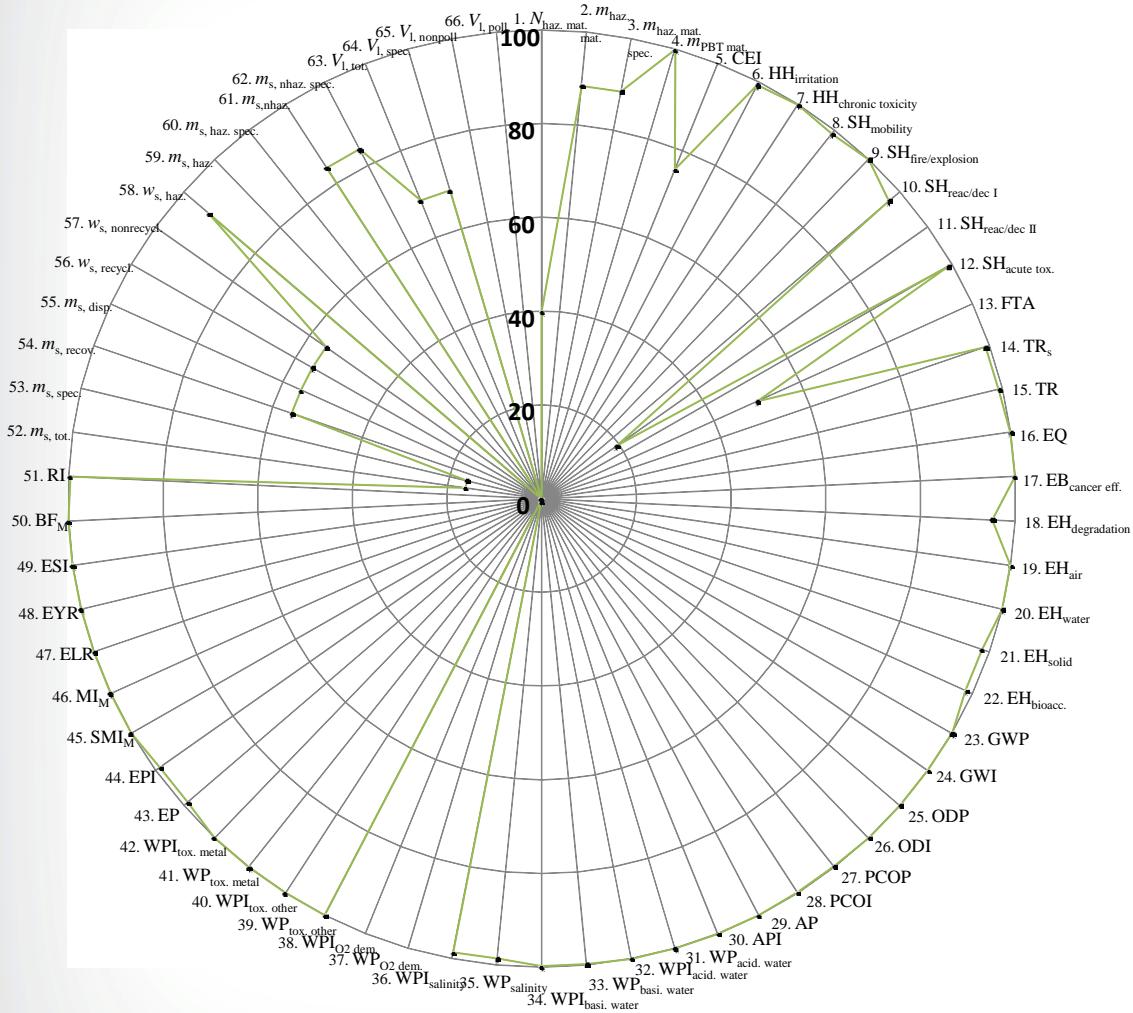
Max Ex_{total}/kg product


GREENSCOPE Evaluation and Case Study

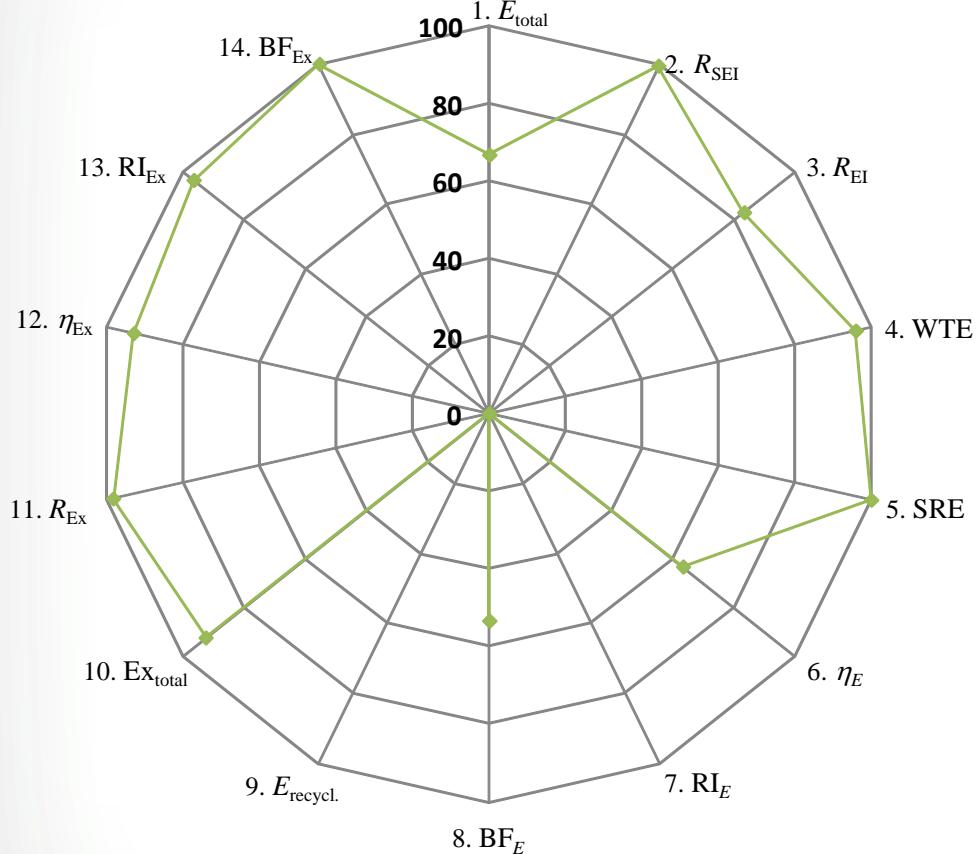
GREENSCOPE Tool: A Demonstration Case Study


- Sustainability quantitative assessment
- Individual or multiple process comparisons: Waste cooking oil, USDA model, Recycling unconverted oil, Hexane extraction
- Key factors, areas for improvements, optimal tradeoffs

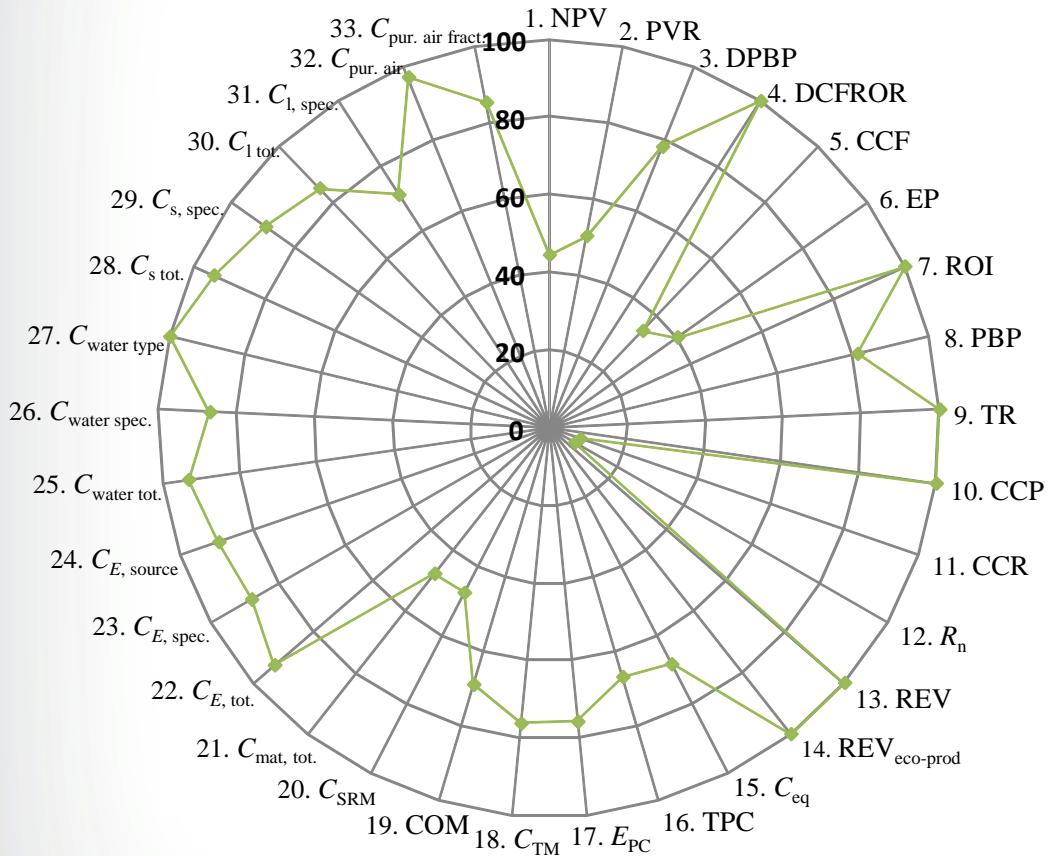

CHEMCAD Simulated Chemical Process File


- Pure soybean oil
- 95% Oil conversion
- 1 Ton FAME/h
- 99.60% Purity
- 0.1 Ton Glycerol/h
- Utilities: steam, electricity, cooling water
- Solid, liquid, & air releases

Efficiency Indicator Results

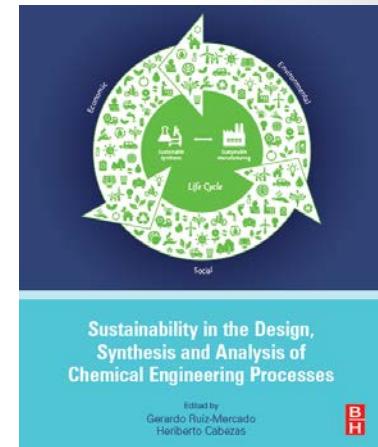

Environmental Indicator Results

Indicator	Description	Sust. (%)
1. $N_{\text{haz. mat.}}$	Number of hazardous materials input	40.00
6. HH _{irritation}	Health hazard, irritation factor	99.31
10. SH _{reac/dec I}	Safety hazard, reaction / decomposition I	97.00
22. EH _{bioacc.}	Environmental hazard, bioaccumulation (the food chain or in soil)	98.34
27. PCOP	Photochemical oxidation (smog) potential	99.83
32. WPI _{acid. water}	Aquatic acidification intensity	99.88
38. WPI _{O2 dem.}	Aquatic oxygen demand intensity	0.60
43. EP	Eutrophication potential	98.89


Energy Indicator Results

Indicator	Description	Sust. (%)
2. R_{SEI}	Specific energy intensity	99.49
6. η_E	Resource-energy efficiency	63.26
8. BF_E	Breeding-energy factor	53.38
10. Ex_{total}	Exergy consumption	92.59
14. BF_{Ex}	Breeding-exergy factor	100.00

Economic Indicator Results


Indicator	Description	Sust. (%)
1. NPV	Net present value	44.52
2. PVR	Payback Period	81.10
3. DPBP	Manufacturing cost	68.70
4. DCFROR	Specific energy costs	88.07
5. CCF	Fractional costs of purifying air	85.26
6. EP		
7. ROI		
8. PBP		
9. TR		
10. CCP		
11. CCR		
12. R _n		
13. REV		
14. REV _{eco-prod}		
15. C _{eq}		
16. TPC		
17. E _{PC}		
18. C _{TM}		
19. COM		
20. C _{SRM}		
21. C _{mat, tot.}		
22. C _{E, tot.}		
23. C _{E, spec.}		
24. C _{E, source}		
25. C _{water, tot.}		
26. C _{water, spec.}		
27. C _{water, type}		
28. C _{s, tot.}		
29. C _{s, spec.}		
30. C _{stot}		
31. C _{l, spec.}		
32. C _{pur, air}		
33. C _{pur, air fract.}		

Remaining Challenges to Advance Sustainability at Process Level

- Data availability for the calculation or prediction of sustainability using indicators
 - Chemical process heterogeneity
 - New chemical compounds
 - Physicochemical properties
 - Toxicity properties and classification lists
 - Cost
 - Capital costs of unconventional equipment
 - Time value variations
- Quantitative social indicators
- Multiproduct allocation for processes and facilities
 - Mass, energy, value
- Legal foundations and the establishment of official methodologies and standards for the assessment of sustainability

Needs and opportunities related to sustainability

- To incorporate sustainability at the early stages of a project life and at the early educational levels (New book Ruiz-Mercado and Cabezas (eds.), Elsevier)
 - Sustainable chemical and products by design
 - Dynamic systems
 - Process control and optimization (Dr. F. Lima, WVU)
 - process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations
 - Multi-stakeholder decision-making (Dr. V. Zavala, U Wisconsin-Madison)
 - Design and analysis of sustainable supply chains
- To integrate life cycle considerations (assessment, inventory) at process development level
- Sustainability regulations at state, country, and international levels
 - Not just greenhouse gases

Acknowledgments

- ✓ Dr. Michael A. Gonzalez, GREENSCOPE Co-developer
- ✓ Dr. Raymond L. Smith, GREENSCOPE Co-developer
- ✓ National Academies of Sciences, Engineering, and Medicine
- ✓ Dr. Jerry L. Miller, Director, Sci. & Tech. for Sustainability, NAS

References

- Ruiz-Mercado, G. J.; Gonzalez, M. A.; Smith, R. L., Expanding GREENSCOPE beyond the Gate: A Green Chemistry and Life-Cycle Perspective. *Clean Tech. & Env. Policy* 2014, 16, (4), 703–713.
- Ruiz-Mercado, G. J.; Gonzalez, M. A.; Smith, R. L., Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study. *Ind. & Eng. Chem. Res.* 2013, 52, (20), 6747–6760.
- Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A., Sustainability Indicators for Chemical Processes: II. Data Needs. *Ind. & Eng. Chem. Res.* 2012, 51, (5), 2329-2353.
- Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A., Sustainability Indicators for Chemical Processes: I. Taxonomy. *Ind. & Eng. Chem. Res.* 2012, 51, (5), 2309-2328.

Thanks!

Questions?

ruiz-mercado.gerardo@epa.gov