FOSTERING OPEN SCIENCE IN METEOROLOGICAL RESEARCH, OPERATIONS, AND EDUCATION

EUGENE S. TAKLE

CF CURTISS DISTINGUISHED PROFESSOR IN AGRICULTURE AND LIFE SCIENCE
DEPARTMENT OF AGRONOMY
DEPARTMENT OF GEOLOGICAL AND ATMOSPHERIC SCIENCE
KEY POINTS

• Developing a culture of sharing data and models by building trust through collaborations

• Removing barriers by use of “honest brokers” in establishing public-private partnerships

• Addressing a trend toward privatizing data in areas of high societal importance

• Ensuring rapid access by graduate students and early career scientists to data and opportunities for early discovery and scientific leadership.

Telegraph, ca. 1862, by Constantino Brumidi (1805-1880) commemorates the completion of the trans-Atlantic cable.

US Senate
CULTURE OF SHARING

• Most important technological advance for launching meteorology as an observational and predictive science …
CULTURE OF SHARING

- Most important technological advance for launching meteorology as an observational and predictive science arguably was the telegraph
CULTURE OF SHARING

- Most important technological advance for launching meteorology as an observational and predictive science arguably was the telegraph

- which enabled meteorologists at multiple locations to simultaneously observe weather conditions…
CULTURE OF SHARING

• Most important technological advance for launching meteorology as an observational and predictive science arguably was the telegraph

• which enabled meteorologists at multiple locations to simultaneously observe weather conditions

• and share data
CULTURE OF SHARING

• Most important technological advance for launching meteorology as an observational and predictive science arguably was the telegraph

• which enabled meteorologists at multiple locations to simultaneously observe weather conditions

• and share data

• which led to real time weather maps and a culture of sharing that now includes complex data sets and numerical models for advancing the use of science for the public good.
BUILDING COLLABORATION – LEGACY EXAMPLE

- Establishment of the National Center for Atmospheric Research
BUILDING COLLABORATION – LEGACY EXAMPLE

- Establishment of the National Center for Atmospheric Research
 - which enabled development of large community (open source) weather and climate research models, major community observing and computational facilities, and data archives and
BUILDING COLLABORATION – LEGACY EXAMPLE

- Establishment of the National Center for Atmospheric Research
 which enabled development of large community (open source) weather and climate research models, major community observing and computational facilities, and data archives and
- large international field observations campaigns
BUILDING COLLABORATION – LEGACY EXAMPLE

- Establishment of the National Center for Atmospheric Research
- which enabled development of large community (open source) weather and climate research models, major community observing and computational facilities, and data archives and
- large international field observations campaigns
- for sharing data.
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

- In early 2000s numerous airplane accidents were deemed preventable due to lack of meteorological data for take-off and landing.
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

• In early 2000s numerous airplane accidents were deemed preventable due to lack of meteorological data for take-off and landing.

• In 2004 Tropospheric Airborne Meteorological Data Reporting (TAMDAR) systems were added to aircraft communications (ACARS) data streams.
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

• In early 2000s numerous airplane accidents were deemed preventable due to lack of meteorological data for take-off and landing.

• In 2004 Tropospheric Airborne Meteorological Data Reporting (TAMDAR) systems were added to aircraft communications (ACARS) data streams

• NOAA served as an “honest broker” between airlines to collect TAMDAR data and ingest them into its forecast models, which improved forecasts in critical situations by 74% (RH), 58% (T), and 63% (wind) and improved aircraft safety
In early 2000s numerous airplane accidents were deemed preventable due to lack of meteorological data for take-off and landing.

In 2004 Tropospheric Airborne Meteorological Data Reporting (TAMDAR) systems were added to aircraft communications (ACARS) data streams.

NOAA served as an “honest broker” between airlines to collect TAMDAR data and ingest them into its forecast models, which improved forecasts in critical situations by 74% (RH), 58% (T), and 63% (wind) and improved aircraft safety.

enabled by sharing data
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

- The current fleet of wind farms operates inefficiently because short-term wind power forecasts lack skill due to lack of understanding of turbine interactions.
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

• The current fleet of wind farms operates inefficiently because short-term wind power forecasts lack skill due to lack of understanding of turbine interactions.

• NOAA, NCAR, and NREL have teamed up to serve as “honest brokers” with wind farm owners to share confidential Supervisory Control and Data Acquisition (SCADA) data from individual wind turbines.
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

• The current fleet of wind farms operates inefficiently because short-term wind power forecasts lack skill due to lack of understanding of turbine interactions.

• NOAA, NCAR, and NREL have teamed up to serve as “honest brokers” with wind farm owners to share confidential Supervisory Control and Data Acquisition (SCADA) data from individual wind turbines

• to improve high resolution wind forecasts for all wind farms
CULTURE OF SHARING – REMOVING BARRIERS: THE HONEST BROKER

- The current fleet of wind farms operates inefficiently because short-term wind power forecasts lack skill due to lack of understanding of turbine interactions.

- NOAA, NCAR, and NREL have teamed up to serve as “honest brokers” with wind farm owners to share confidential Supervisory Control and Data Acquisition (SCADA) data from individual wind turbines.

- to improve high resolution wind forecasts for all wind farms

- by sharing data.
CULTURE OF SHARING – DISTURBING TRENDS

- Long-term, complex, multi-disciplinary and expensive field observations having high innovation and potential economic value are not being fully supported by public funds.

- As a consequence, consortia are forming to acquire and market data to a narrow set of clients at rates that recover costs of expensive data collection.

- Restricting access to data of high potential economic value to those who have resources to pay can lead to undesirable societal consequences.
EXAMPLE OF THE NEED FOR OPEN SCIENCE

- By mid-century one year out of ten is projected to have a five-day heatwave that is 13°F warmer than the end of the 20th century in the food-producing Midwest.

- Key long-term plant, microbial, soil, and micrometeorological field information is lacking for understanding basic plant processes such as vegetative and reproductive failure “points” and nutritional quality of food grains grown in climatically changing field conditions.

- This creates high uncertainty in our ability to design a sustainable system for producing a sufficient and nutritious global food supply for the changing climate of the 21st Century.
OPEN SCIENCE AND EARLY CAREER SCIENTISTS

- Restrictions on open science can disproportionately impact graduate students and early career scientists who experience barriers to opportunities for early discovery and exercising scientific leadership.

- Graduate students have new and advanced analytical tools that may lead to unique insights.

- Restrictions in publishing results from data generated under highly restrictive confidential agreements reduce productivity.

- High costs of publishing may artificially limit early career productivity.

http://cropwatch.unl.edu/2017/growers-statewide-share-farm-research-results

https://www.igb.illinois.edu/article/team-calls-integrated-midwest-field-research-network
KEY POINTS

- Developing a culture of sharing data and models by building trust through collaborations
- Removing barriers by use of “honest brokers” in establishing public-private partnerships
- Addressing a trend toward privatizing data in areas of high societal importance
- Ensuring rapid access by graduate students and early career scientists to data and opportunities for early discovery and scientific leadership.

Telegraph, ca. 1862, by Constantino Brumidi (1805-1880) commemorates the completion of the trans-Atlantic cable.

US Senate
REFERENCES

