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Solar-Driven Fuel Production

HO—->H,+)50, CO,—>CO+ %0,

e Photochemical Dissociation e Thermolysis
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e Utilizes (only) select wavelengths
e Material corrosion

e Requires precious metal catalyst e Reaction at > 4,000 °C
e Requires gas separation
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Solar-Driven Fuel Production

Two-step thermochemical process using non-stoichiometric oxides

Thermal Reduction/ Oxidation/Fuel Production
Oxygen Release

MO, H,O, CO,
=
- MO, H,, CO, etc.
T, ©: T,

Ideal candidate: ceria, or CeO,_;
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Cerium Dioxide as the Reaction Medium
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Experimental Demonstration
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Reactor Proof of Principle
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Predictable Gas Evolution Rates
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Model: quasi-equilibrium

P 1 between solid and gas
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Better Materials: Ce, Zr,O,

1500 °C/800 °C cycle

CeO, Ce 2020,
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Fuel production per cycle: 8.6 — 15.2 mL H, g! oxide (!)
Panlener et al., J Phys. Chem. Solids (1975) Hao & Haile Chem. Mat. (2014)
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Equilibrium behavior of Ce,_Zr O,
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Findings and Outlook

Ceria is robust upon extended thermochemical cycling

Surface reaction rate and bulk diffusion are extremely fast
= Do not limit fuel production rates at high temp (~1000 °C)

Modifying thermodynamic properties

= Fuel per cycle T, for cycles taken to completion

Fuel production rates limited by thermodynamics at high T

= Modifying material to T fuel per cycle, | rate

Thermodynamic conundrum!
= Entropy change in MO, limited to entropy of mixing

= Pursue thermodynamic changes with larger sources of entropy
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Solar Electricity Trends (US)
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Solar Energy Industry Associates
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Wind Electricity Trends (US)
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Mate: In the Wind Vision, ‘goad to excellant sifes” are thase with average wind speeds of /5 melers par second (mys) or igher at hub haght
LCOE estimates exclude the PTC.

Source: Adapted from Lawrence Berkeley Mational Laboratory 2014 data (23

American Wind Energy Association
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H,/O, Reversible Electrochemical Cell

Fuel eleclirode Airlelectrode

Overall: H, + 2 O, »> H,0
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Oxygen Electroreduction / Evolution

reduction (electricity generation)
O, +4e 220"

evolution (fuel generation)

- Typically, perovskite oxides: ABO;,
= A =Ba, S, La, RE... ; B = Co, Fe, Mn, TM..
« Vast composition space

- Reaction pathway varies depending on
= Material composition
= Temperature

= Environmental conditions (gas vs. liquid, concentration, pH)

« Vast parameter space
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Range of Interfacial Resistance Values

Canonical cathode material: (La,Sr)MnO5, LSM
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Graded LSM-LSC-GDC by CCVD
LSMIGDC by sol-gel

0.8 mgem™ GDC-impergnated LSM
5.8 mgem © GDC-impregnated LSM

S. Jiang. J. Mater. Sci. 43, 6799-6833 (2008)
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High-throughput methodology
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Example: (La, sSr, ,)MnO,

Growth temperature gradient = microstructure / surface structure gradient
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0, +4e =20

Electrocatalysis
enhanced at
exposed grain
boundaries!

J. Mater. Chem. A 3, 19330-19345 (2015)
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