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Solar-Driven Fuel Production
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22 2 2H O H O→ +

• Reaction at > 4,000 °C
• Requires gas separation

• Thermolysis• Photochemical Dissociation
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• Utilizes (only) select wavelengths
• Material corrosion
• Requires precious metal catalyst
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Solar-Driven Fuel Production

MO2

MO2-δ H2O, CO2

H2, CO, etc.
O2TH TL

Thermal Reduction/
Oxygen Release

Oxidation/Fuel Production

Two-step thermochemical process using non-stoichiometric oxides

Ideal candidate: ceria, or CeO2-δ
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Cerium Dioxide as the Reaction Medium

22 2 2CeO CeO Oδ
δ−→ +

O2

2 2 2 2H O CeO H CeOδδ δ−+ → +
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Experimental Demonstration
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Chueh & Haile, Phil. Trans. R. Soc. 368, 3269-3294 (2010).
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Reactor Proof of Principle

ceria
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Predictable Gas Evolution Rates

Heating to 1488 °C
10 ppm O2 (Ar)
1007 sccm g-1

Model: quasi-equilibrium 
between solid and gas

Implication: Surface 
reaction and diffusion at 
high T are “infinitely” fast

Davenport, …, Haile, Int. J. Hydr. Energy 330 (2017) 16932-16945
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Better Materials: Ce1-xZrxO2-δ
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δ = 0.12 !δ = 0.068

Fuel production per cycle: 8.6 → 15.2 mL H2 g-1 oxide (!)
Hao & Haile Chem. Mat. (2014)

1500 °C/800 °C cycle
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Equilibrium behavior of Ce1-xZrxO2
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• Ceria is robust upon extended thermochemical cycling

• Surface reaction rate and bulk diffusion are extremely fast

 Do not limit fuel production rates at high temp (~1000 °C)

• Modifying thermodynamic properties

 Fuel per cycle ↑, for cycles taken to completion

• Fuel production rates limited by thermodynamics at high T

 Modifying material to ↑ fuel per cycle, ↓ rate

• Thermodynamic conundrum!

 Entropy change in MOx limited to entropy of mixing

 Pursue thermodynamic changes with larger sources of entropy

Findings and Outlook



Solar Electricity Trends (US)

Solar Energy Industry Associates

(Per unit power)
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Wind Electricity Trends (US)

(Per unit energy)

American Wind Energy Association
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H2/O2 Reversible Electrochemical Cell

Fuel electrode Air electrode

H2 O2
O=

Overall: H2 + ½ O2 → H2O

½ O2 +  2e- → O=H2 + O= → H2O + 2e-

Electrolyte

e-
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• Typically, perovskite oxides: ABO3

 A = Ba, Sr, La, RE… ; B = Co, Fe, Mn, TM…

• Vast composition space
• Reaction pathway varies depending on

 Material composition

 Temperature

 Environmental conditions (gas vs. liquid, concentration, pH)

• Vast parameter space

Oxygen Electroreduction / Evolution

- 2
2O  + 4e 2O  −



reduction (electricity generation)

evolution (fuel generation)

A

B

O
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Range of Interfacial Resistance Values





S. Jiang. J. Mater. Sci. 43, 6799-6833 (2008)

Canonical cathode material: (La,Sr)MnO3, LSM



Gradient library Photolithographic patterning Environmental scanning 
electrical impedance probe

High-throughput methodology

electrolyte

electrode film ~200 nm

300 µm

1.5 mm 7 mm 1.5 mm

~100 µm
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CeO2 …. ZrO2

Electrolyte

Oxide 
electrocatalyst

O2-

O2

I, V

J. Mater. Chem. A 3, 19330-19345 (2015)

1 library, 19 thicknesses

MRS Bull. 27, 301-308 (2002)
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Example: (La0.8Sr0.2)MnO3
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J. Mater. Chem. A 3, 19330-19345 (2015)
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