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Fossil fuels: An amazing resource

Consider petroleum

— Massive world-wide resource, extremely abundant
e Provides ~ 5 TW of power across the globe (out of 18 TW total)
— Huge energy density
e Candrive a car 500 miles on one tank of gas, or fly a commercial jet half-way around the earth.

e A full tank of gasoline in a car is approximately equivalent to:
— The potential energy of 1 million gallons of water at 200 ft elevation
— The electrical energy stored in 80,000 iPhone 6 batteries

— High power density
e (Can power anything... automobiles, trucks, shipping vessels, commercial and military aircraft....
* The power transfer in filling up your car at the pump is approximately 5 MW.
— Yet very chemically stable
 When you drive your car, do you worry about it exploding?
— Easy to store and to transport
e Approx. 100,000 miles of gasoline pipeline in the USA.
e Asa liquid fuel it can fit into any size and shape of container with ease.
— Cost
* How do the gas prices of today (~ $2-3/gallon) compare with other consumer goods? Bottled
water? Milk? Orange juice?
— Convenience
e Have you ever timed yourself at the gas pump? How long does it take to fill the tank?

Any future energy technology would need to compete with these attributes! 2



Global Projections
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“The Outlook for Energy: A View to 2040” by ExxonMobil (2016).



The future of transportation

Global energy demand Trade, economic growth spur
for transportation to close to 55 % increase in

rise by about 30 % commercial transport needs
from 2014-2040
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For the bulk of transportation in 2040, chemical fuels will be needed.

“The Outlook for Energy: A View to 2040” by ExxonMobil (2016). 4



The future of the chemical industry

Chemicals is one of the fastest-
growing energy-demand sectors

Chemical demand by region
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The chemical industry will demand ~ 2.5 TW.
More efficient, sustainable processes are needed.

“The Outlook for Energy: A View to 2040” by ExxonMobil (2016).



Fuels and chemical production needs for
these two sectors in 2040:

e Heavy-duty transportation 3.5TW
e Chemical industry 2.5TW

6.0 TW

Can we produce fuels and chemicals in a
more sustainable manner than we do today?




A vision for the future:
A more sustainable approach
to fuels and chemicals




Catalyzing a Sustainable Future

CO and CO,
hydrogenation

EIectroataIysts

H, storage 3 .
> @
| «———— < > F
Battery-, fuel cell- or

combustion-powered transportatlon Fuel storage Chemicals, materials

Z. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. N@rskov, T. F. Jaramillo, Science, 355 6321 (2017)



Dropping costs of renewable electricity

LCOE
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Note: LCOE medians represent average between low end and high end of LCOE range for each technology.

(a) Low end represents crystalline utility-scale solar with single-axis tracking in high insolation jurisdictions (e.g., Southwest U.5.), while high
end represents crystalline utility-scale solar with fived-tilt design.

(o) Lazard's LCOE initiated reperting of reoftop C&I solarin 2010,
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Developing catalysts, processes, and devices

Electrocatalysis Integrated Devices
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Electrochemical & Photoelectrochemical Pathways

Scheme 1: Separate devices for electricity
generation and for fuel production.

Chemicals

Renewable /
CO: free
energy sources

Electro-
reduction

Scheme 2: One integrated device for
solar harvesting and fuel production.




Catalyst development strategies
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Hydrogen (H,)

Carbon-based fuels and
chemicals

Ammonia (NH,)
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Hydrogen (H,)
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PV-electrolysis with a 3j llI-V PV
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A dual electrolyzer setup
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Solar-to-Hydrogen (STH) Efficiency = 30%
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J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen, J.W.D. Ng, T. Bilir, J.S. Harris, T.F. Jaramillo, Nature Communications, 7, 13237, 2016. 17



Hydrogen evolution reaction (HER) mechanisms

Overall Rxn: 2H* + 2e- 2 H,

Volmer-Tafel Volmer-Heyrovsky
(i.e. Langmuir-Hinshelwood) (i.e. to Eley-Rideal)

[Volmer] {H*+e = H*}x?2 [Volmer] H*+e = H*
[Tafel] 2H* > H,

[Heyrovsky] H*+H*+e > H,

18



Design principles for H, evolution catalysts

mid-20t" Century

THE RATE OF ELECTROLYTIC HYDROGEN EVOLUTION
AND THE HEAT OF ADSORPTION OF HYDROGEN

By RoGER PARSONS
Dept. of Physical and Inorganic Chemistry, The University, Bristol 8

Recerved 10th December, 1957
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R. Parsons, Trans. Faraday Soc., 54, 1053-1063 (1958).
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“Once this relation is established the complete current-voltage
curve can be calculated for a metal, given the standard free

energy of adsorption of hydrogen upon it.”

calculated by DFT

J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff,
J.K. N@rskov, Nature Materials, 5, 909-913 (2006).
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Nano-structured MoS,: Developing active, stable, earth

abundant, scalable catalysts for hydrogen production
3. [Mo,S,;]* clusters A

J. Kibsgaard, T.F. Jaramillo et. al., Nature Chemistry, 2014, 6, 248.

S~ (bridging)
L

2. Mesoporous MoS, thin films

J. Kibsgaard, T.F. Jaramillo et. al., Nature Materials, 2012, 11, 963.

1. Core-shell MoO;-MoS, nanowires
Z. Chen, T.F. Jaramillo et. al,, Nano Letters 2011, 11, 4168.

(b) 200°C'

g 20 nm
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MoS 5 nanopartlcles
T.F. Jaramillo et. al., Science, 2007, 317, 100Q

hydrogenase
nitrogenase active site
active site

AG,=-0.07eV  AG,=-0.06 eV

B. Hinnemann and J.K Ngrskov,
J. Am. Chem. Soc. 2004, 126, 3920.




Device Integratlon PEM Electrolyzers

H, electrode: N et
Mzo-based catalyst, 0 ele:trr.tde: N TeStI ng‘
carbon paper IFElack, Temesh ! Station
Wit f:" ‘
HZ D\ 02 | )
H* 1 H,0

Nafion membrane

Ammonium heptamolybdate +

carbon black

MoS,-CB

~ C O
L=
L.
L

L Y CXC

Impregnation

"

Sulfidize in 10% H,S,
90% Hat 200 °C

Mo, 5, clusters +
carhon black

Impregnation

EE—

Dry over heat bath ﬁ E

Ammonium heptamolybdate +
ammaonium phosphate +
carbon black

MoP|S-CB

Impregnation

Reduction in forming gas || ‘

followed by sulfidization

o0 = I
. 02 04 06 08 10
Current Density (A/cmz)

00

12

JW.D. Ng, T.R. Hellstern, J. Kibsgaard, A.C. Hinckley, J.D. Benck, T.F. Jaramillo, ChemSusChem, 8 3512-3519 (2015). 21



MoS,-Si Photocathode Fabrication

1. Begin with p-type Si wafer 2. Dope n* surface layer 3. Deposit ~3.6 nm Mo

n*-doped Si
p-type Si p-type Si n*-doped S|
p-type Si

4. Sulfidize in H,S/H, at 250°C
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J.D. Benck, S.-C. Lee, K.D. Fong, J. Kibsgaard, R. Sinclair, and T.F. Jaramillo, Advanced Energy Materials, 4, 1400739, 2014. 22



MoS,-Si Stability & Activity

02 -01 00 01 02 03 04 05
E (V vs. RHE)

Stable over

> 100 hour experiment

J.D. Benck, S.-C. Lee, K.D. Fong, J. Kibsgaard, R. Sinclair, and
T.F. Jaramillo, Advanced Energy Materials, 4, 1400739, 2014.

_20 L 1 L 1 L 1 L 1 L 1 L 1

O 10 20 30 40 50 60
Time (Day)

Stable over
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L.A. King, T.R. Hellstern, J. Park, R. Sinclair, T.F. Jaramillo,
ACS Applied Materials & Interfaces
(accepted and in press, 2017)
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Carbon-based fuels and

chemicals
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Thermodynamic & Kinetic Considerations

Y. Hori, “Electrochemical CO, reduction on metal electrodes”
within Modern Aspects of Electrochemistry, Number 42, Edited by

C. Vayenas et. al., Springer, New York, 2008. EO vs. RHE
2H* + 2e <> H, 0.00V
CO, + 2H* + 2e <-> CO+H,0 -0.11V
CO,+8H'+8e € CH,+ 2H,0 +0.16V All values
are close to
2C0, + 12H*+12e° € C,H, +4H,0 +0.07V __the H,
evolution
2C0, + 12H*+12e- € C,H.OH + 3H,0 +0.08 V potential
(0.00 V).
3CO, + 18H* + 18e <> CH,0H +5H,0 +0.09V

IO CAC ECECHEVCEVCREY,

+H* +e +H* +e-  +H* +e +H* +e +H* +e +H* +e +H* +e +H* +e

A. Peterson, F. Abild-Pederson, F. Studt, J. Rossmeisl, J.K. N@rskov, Energy& Environmental Science v3 (2010) 1311-1315. 25



CO, reactor design and development
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T. Hatsukade, K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, PCCP, 2014, 16, 13814.



16 different reaction products from a Cu catalyst
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K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci., 2012, 5, 7050-7059. 27



Understanding pathways to C, products across

different transition metal catalysts
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K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, and T.F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 14107-14113.
X. Liu*, J. Xiao*, H. Peng, X. Hong, K. Chan, and J.K. Ngrskov, Nat. Comm., 2017, 8, 15438.

28



Ammonia (NH,)
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The Haber Bosch Process — Industrial Ammonia Synthesis

Haber Bosch Process
N,+3H, 2 2NH,

100-150 bar
700-800K .
Image Credit:

H, from natural gas reforming | 1akob Kibsgaard

Appl, M. Ullmann's Encyclopedia of Industrial Chemistry (2000). 30
Ammonia, <http://ietd.iipnetwork.org/content/ammonia> (2014).



http://ietd.iipnetwork.org/content/ammonia

Sustainable ammonia production

“‘!7

_______

Image Credit: Jakob Kibsgaard

Key Goal: Aqueous electrochemical NH; production

e Directly from N, and H,O

e Decentralized fertilizer production, produced as-needed

* Renewably powered (wind/solar)

Many challenges and opportunities for catalyst development!
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Stepwise cycling process to circumvent H, evolution

STEP 1: |6LiOH|— 6Li + 3H,0 + 3/20,,
STEP 2:  6Li + N,,, — 2Li;N

STEP3:  2Li,N,, + 6H,0 —[6LiOH]+[2NH,]

N Direct Nitridation
2

Qg @) 6Li+ N, —> 2LiNG)

Exothermic Release of Ammonia
2Li,N(s) + 6H,0 — 6LIiOH + 2NH,

Renewable
Energy
Sources

90 % of electrons
- NH,;

Molten Salt Electrolysis
6LIOH — 6Li + 3H,0 + %0 (g)

J. M. McEnaney, A.R.Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Ng@rskov 32
Energy Environ. Sci. 10 1621 (2017).



LiIOH Electrolysis — Electrochemical Cell Design

e LiOH-LiCl melt at anode

e LiCI-KCl melt in main chamber and
at cathode

e 350-450 °C operating temperature

e Performed in glove box- O, and
H,O evolution detected

e Diffusion barrier improves yield
substantially due to prevention of
adverse reactions at the cathode

1
' V)
0, + HZOT l LiOH

Porous Alumina
Diffusion Barrier

7

-t

N

Molten Salt /

Electrolyte

Solid Alumina
Li Collection Chamber

Solid Alumina
Crucible

/i‘\\ J. M. McEnaney, A.R.Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Ngrskov 33

LY. Energy Environ. Sci. 10 1621 (2017).



Ammonia Detection Methods: Gas Phase FTIR and Isotopic Labeling

Intensity (arb. units)

1¥NH; Calculated 1“NH; Standard

| | | | |
970 960 950 940 . 930 920
Wavenumber (cm )

e Specific signal for verification of ammonia production
* Isotopic studies prove that ammonia was produced from N,

J. M. McEnaney, A.R.Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Ngrskov 34
Energy Environ. Sci. 10 1621 (2017).



Solar-driven NH, feasibility: Land Area

Typical agricultural field requires:

1 hectare = 10,000 m?

100 kg NH,/hectare/yr

For a 100% Faradaic Efficiency process:
Only 5 m? of solar cells needed!

5 m?

Sawyer, J.; Nafziger, E.; Randall, G.; Bundy, L.; Rehm, G.; Joern, B. Concepts and Rationale for Regional (S:':gh’KA'. R.; ROhIT’ B_'I_AI;;_Sg:WT(lbeéJ' ]::.;l(?a'\:gnelilo, M';( 35
Nitrogen Rate Guidelines for Corn; lowa State University-University Extension PM: Ames, IA, 2015. an, .,Jar.aml o, T.F.; Chorkendorft, I.; Norskov, J. K.
ACS Catalysis 2016, 7, 706.



Summary & Conclusions

Sustainable pathways to fuels
and chemicals are promising.
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Catalyzing a Sustainable Future

CO and CO,
hydrogenation

EIectroataIysts

H, storage 3 .
> @
| «———— < > F
Battery-, fuel cell- or

combustion-powered transportatlon Fuel storage Chemicals, materials

Z. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. N@rskov, T. F. Jaramillo, Science, 355 6321 (2017)



Continuous Device Concept

1) LiOH - Li
2) Li = LisN
Barrier can also thin and 3) Li;N = LiOH
separate molten Li from —

salt upon roll rotation

NH,

Add recycled LiOH to
counter electrode chamber

J. M. McEnaney, A.R.Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Ng@rskov 39
Energy Environ. Sci. 10 1621 (2017).



Large scale renewable H, production

1%
2 Concept production plant
50,000 kg/day production
Total capital cost ~ $0.50-$0.60/kg H,

(less land)

- —

N h —
W Stack — Y
W Power Supply
B Thermal Control '
m BOP
M BOP Labor -
W Premium Spares :‘.... PFROTON | cCeliStackBank | -':}'-
™ PlantBuilding Cost el e Hydrogen Management |
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Development of large format, oriented surfaces

(X-ray Pole Figures\ ( Cu(100)/Si(100) Cu(111)/Al,04(0001) \
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In-situ electrochemical scanning tunneling microscopy (EC-STM)

Cu epitaxially grown on Si: ECSTM in 0.1 M HCIO, at -0.24 V vs RHE
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Surface structures match expectations based on the bulk structure.
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Many steps sites observed on Cu(751)

Cu(S) — [n(110)-(100)})/Si(111)
n=2,3,4,5, 6, 7: Cu(210), (320), (430), Cu(751) Model Surface
(540), (650), (760)

C. Hahn, T. Hatsukade, Y.-G. Kim, A. Vailionis, J.H. Baricuatro, D.C. Higgins, S.A. Nitopi, M.P. Soriaga, and T.F. Jaramillo. 43
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Undercoordinated surface sites steer catalyst selectivity
towards oxygenates vs. hydrocarbons
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