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Solar Steam Generation: Thermal Concen Masdar
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Light Absorption: Nanocomposite Morpho
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Light Absorption: Nanocomposite Absorbe
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Light Absorption: Nanoporous Ultrathin Filr Masdar
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O To combine the strong interference in ultrathin Ge film absorber with
localized surface plasmons around Au nanopores
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Light Absorption: Nanoporous Absorber Fak
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Vapor Generation: Microstructured Surfaces Masdar
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* Y.Y. Zhu, D.S. Antao, D.W. Bian, T.J. Zhang, E.N. Wang, “Surface Structure Enhanced Microchannel Flow Boiling”,
Journal of Heat Transfer — ASME, 138 (9), 091501, 2016.

* Y.Y. Zhu, D.S Antao, ..., T.J. Zhang, E.N. Wang, “Suppressing high-frequency temperature oscillations in
microchannels with surface structures”, Applied Physics Letters — AIP, 110 (3), 033501, 2017.
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Development of a dry-out heat flux model for vapor generation ‘
« Capture the meniscus along the wicking distance
« Capture the coupled fluid flow, pressure and interface
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* M.H. Alhosani, T.J. Zhang, “Dynamics of Mlcroscale Liquid Propagation
in Micropillar Arrays,” Langmuir — ACS, vol.33, pp.6620-6629, 2017. bt

* Y.Y. Zhu, D.S. Antao, Z. Lu, S. Somasundaram, T.J. Zhang, E. N. Wang, : S UItra-fat “qmd ]
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Vapor Generation: Thin Liquid Film Evapo
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Superhydrophobic microporous surfaces for Jumping Droplet-enhanced Condensation

Nanostructured micro-mesh surface morphologies

*+ G.Q. L, ..., T.J. Zhang, “Microscopic Droplet Formation and Energy Transport Analysis of Condensation
on Scalable Superhydrophobic Nanostructured Copper Oxide Surfaces”, Langmuir — ACS, vol.30, 2014.
* F. Xiao, S.J. Yuan, ..., S.0. Pehkonen, T.J. Zhang, “Superhydrophobic CuO Nanoneedle-covered Copper
Surfaces for Anticorrosion”, Journal of Materials Chemistry A — RSC, vol.3, pp. 4374-4388, 2015. AAARRARAARRAARAARRAARAL
+ A.AIli, Q. Ge, T.J. Zhang, "How Nanostructures Affect Water Droplet Nucleation on Superhydrophobic 1
Surfaces", Journal of Heat Transfer — ASME, vol.139, 112401, 2017 Cu Gas Superhydrophobic Structu
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Condensation: Directional Droplet Jumping Masdar
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Faster growth of droplets on microporous surfaces:
1) Only in upward direction; 2) Larger solid contact area;
3) Lower temperature on base than on wire

« A.Aili, H.X. Li, M.H. Alhosani, T.J. Zhang, “Unidirectional Fast Growth and Forced Jumping
of Stretched Droplets on Nanostructured Microporous Surfaces,” ACS Applied Materials &
Interfaces, vol.8, pp.21776-21786, 2016.

H.X. Li, W. Yang, A. Aili, T.J. Zhang, "Insights into the Impact of Surface Hydrophobicity on
Droplet Coalescence and Jumping Dynamics”, Langmuir — ACS, vol.33, 8574-8581, 2017




Quantum Simulation of Surface Wettability Masdar
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