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Side-effects of chemotherapy




Metabolism of healthy vs cancerous cells
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Hexokinase 2 (HKII)

Catalyzes the first step of glycolysis:
glucose = glucose 6-phosphate

The predominant isoform over-expressed in
malignant tumors

In highly aggressive cancer cells HKII .
levels > 100-fold higher than normal cells @u.'\q i
In tumors, up to 70% of the enzyme is bound to Vo
the outer mitochondrial membrane (OMM) via f:, it
Interaction with the voltage dependent anion r;‘f’;;"ﬁ: ,’?‘ y
channel (VDAC). 9?* v

Interaction with VDAC occurs via the N- (Rabeh et al., 2006)
terminal 15-amino acids of HKII.



Hexokinase 2 (HKII)

» Mitochondrial binding gives HKII preferential
access to mitochondria-generated ATP,
which the enzyme selectively uses for
glucose phosphorylation.

* The glucose-6-phosphate product of HKII-
mediated phosphorylation of glucose is a
metabolic intermediate precursor in most
biosynthetic pathways

- essential for generating the
proteins, nucleic acids and lipids
required for cell proliferation.

(Rabeh et al., 2006)



Mitochondria-bound HKII plays a major role in
preventing tumor apoptosis

Anti-apoptotic State Mediated by Apoptosis Induced upon Release
Mitochondrial Bound Hexokinase 11 of Hexokinase II from Mitochondria
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HKII is required for tumor initiation and maintenance,
as well as promotion of metastasis.




Hypothesis

A peptide corresponding to the VDAC-binding N-terminal 15 amino
acids of HKII (pHK) can be used to selectively dissociate HKIlI from
mitochondria, and subsequently inhibit glycolysis and induce apoptosis,
in cancer cells.

pHK MIASHLLAYFFTELN-amide

PHK g6 A488-MIASHLLAYFFTELN-amide
PHK-PAS MIASHLLAYFFTELNFFLIPKG-amide
PHK-PAS , o5 A488-MIASHLLAYFFTELNFFLIPKG-amide

PAS: Penetration Accelerating Sequence



Quantification of cellular uptake
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Proposed mechanisms of CPP internalization

ENDOCYTOSIS DIRECT TRANSLOCATION
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Mechanism of cellular uptake
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PHK-PAS enters cancer cells by both endocytosis (macropinocytosis) and
an energy-independent mechanism.
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Intracellular localization

M pHK
M pHK-PAS

PHK-PAS CPP exhibits substantially
greater mitochondrial localization
compared to pHK.
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Toxicity of the HKII-derived peptides

HelLa HelLa

PHK-PAS is significantly .

more toxic to cancer cells : o]

compared to pHK. * T =
- I

PHK-PAS induces substantially ) =

lower toxicity in non-cancer HEK-  § | - e ”

293 cells vs cancer cells. f e

Propidium lodide (PI)

PHK-PAS-induced cancer cell death
occurs primarily via apoptosis.

Annexin V Annexin V



Mitochondrial membrane potential (AY,), intracellular
ATP levels and cellular metabolic activities
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HKII content of mitochondrial and cytosolic
fractions of HelLa cells

a b Hela

In HeLa cells, pHK-PAS displaces
HKII from mitochondria, which
triggers release of cytochrome c to

the cytosol and apoptosis.
. |

In HEK-293 cells, displacement of
the lower levels of endogenous HKI|
from mitochondria does not trigger

apoptosis.



Coupling of PAS to
pHK enhances the
peptide’s cellular
uptake and cytosolic
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Once in the cytosol,
pPHK-PAS accumulates
at the mitochondrial
membrane



pHK-PAS binds to
mitochondria,
displacing full-length
endogenous HKII in
the process.

! pHK
! PAS

. HK 1
e Cytochrome C



[ pHK
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e Cytochrome C

Disruption of the HKIlI-mitochondria interaction leads to AW _ depolarization,
~inhibition of mitochondrial respiration and glycolysis and depletlon
intracellular ATP levels.
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This is followed by release of cytochrome c and, finally, apoptosis.
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Utilizing the acidic tumor microenvironment
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pH-sensitive peptides

PHLIP (pH-low insertion peptide)
ATRAM (acidity-triggered rational membrane peptide)

Cancers
Healthy tissue ‘rzif‘_o Diseased tissue
b py :
Inflammation

11 ’?f"' pHLIP - Cargo molecule: therapeulic, diagnostic agents,
nanoparticles, liposomes, dendrimers
</
- =leavable link - Cargo molecule: therapeutic, diagnostic, cell or gene

regulation agent



ATRAM-mediated delivery of
cancer therapeutics
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CBJ/]-modified iron-oxide nanoparticles
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CBJ/]-modified iron-oxide nanoparticles

Uptake of Dox vs Dox-loaded
nanoparticles in HelLa cells
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CBJ/]-modified iron-oxide nanoparticles
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CBJ/]-modified iron-oxide nanoparticles
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The nanoparticles exhibit substantially lower uptake
and cytotoxicity in non-cancerous HEK-293 cells.



Summary

 Development of cancer-specific therapeutics and drug delivery
platforms by taking advantage of unigque cancer/tumor properties:

- elevated glycolytic rates (overexpression of hexokinase 2)

- extracellular/microenvironment acidity

e This serves to:
- enhance the efficacy of therapeutics/drug delivery platforms

- reduce targeting of healthy tissue (minimizing side-effects)
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