CE éﬁ%rlrg)putational Carnegie Mellon University
peprimen: | School of Computer Science
By T,
Self-driving instruments: th ; i : :
need for active machine ‘..
learning in biomedical research : 2 > 2

Robert F. Murphy

Ray & Stephanie Lane Professor of Computational Biology and

Professor of Biological Sciences, Biomedical Engineering and Machine Learning
Head, Computational Biology Department, School of Computer Science

February 2018




The failure of Reductionism

Pathway: LSM b

* For many decades,
biomedical research was
based on reductionism, the
assumption that biological
components could be
understood in isolation

+ By the 80’s it was becoming _ - _
clear that many, many A comprehensive analysis of
components interacted protein-protein interactions

in Saccharomyces cerevisiae
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Reductionism gives way to Systems Biology

* Cells, Tissue, Organs and Organisms were recognized to be
“‘complex systems” — systems whose properties as a whole
cannot be inferred from their individual properties

* The need for computational methods to produce predictive
models became recognized

* Need data, so many “big science” projects were started



A big problem...

- Assuming n genes, one gene=one function and reductionism,
the number of experiments equals the number of genes, about
10,000

— at one experiment per day, 28 years

- Given m average genes per function and n genes, the number
of experiments is n™~ 104m ~ 1020

— at 10° experiments per day, 2 million centuries!
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and another one...

- Emphasis in systems biology on “validating” or “proving” of
models by doing selective experiments

» But empirical models cannot be proven!
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Solution?

- Use active machine learning

« Choose experiments not to prove model but to
improve model - NATURE CHEMICAL BIOLOGY | VOL 7 | JUNE 2011 —

commentary

An active role for machine
learning in drug development

Robert F Murphy

Because of the complexity of biological systems, cutting-edge machine-learning methods will be critical
for future drug development. In particular, machine-vision methods to extract detailed information from
imaging assays and active-learning methods to guide experimentation will be required to overcome the
dimensionality problem in drug development.
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Systems Biology, Big Data and Drug Development

» Diseases can be extremely heterogeneous and based
on many factors (e.g., diabetes)

» Drug effects can be very different depending on the
patient and disease

+ ldeally, need to know how all drugs will affect all
diseases in all patients

* Too many combinations to measure everything
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Further...

 Leading cause of drug failures in early development is not lack
of effectiveness but safety concerns (and in late development,
discovery of undesirable side effects)

* Drug development not
just about finding hits
on desired target but
also about avoiding
others

ONE FDA-
APPROVED
DRUG

PRE-DISCOVERY
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Current practice in drug screening: consider each target separately
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Where we’d like to be: consider all drugs and all targets

Drugs =
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Dempster et al (1977)
Hill et al. (1995);
Lee & Seung (1999);

Buchanan & Fitzgibbon (2005);
Salakhutdinov & Mnih (2008);

Mitra (2010);
Gobnen (2012); ...
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Playing Battleship with Drugs and Cells
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Use subset of PubChem Data

* Assays: 177

\\\\\\\
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Unique Protein Targets: 133
Compounds: 20,000
Experiments: ~1,000,000 (30% coverage)

Use features to measure similarity between drugs and between
targets

Compare discovery rate across different methods
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With only 2.5% of the 500
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First Prospective Use of

Active Learning for Complex System

Use liquid handling robots and automated
microscope to execute experiments chosen
by an active learner




/
Try to learn the effects

of 96 drugs upon 96
GFP-tagged proteins,
without doing
experiments for all

drugs and proteins
- J

~
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- Each small box is one drug ®
and one target (but due to “
duplication there are four 0
combinations) *

« Green shows accurate :
prediction, purple is .
inaccurate, white shows .
experiments done .
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After doing 28% of possible 1
experiments, model is 92%
accurate and 40% more -
accurate than would have - )
been obtained by random g
choice of experiments |

\ J Active Learning

Coverage based Model Fit
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Conclusions?

» Deep learning may find low-hanging fruit in existing data
but fundamentally limited

« Embracing complexity in higher dimensional models
combined with active machine learning to guide
experimentation needed in many areas of biomedical
research
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