Fiscal Incentives for Scientific Research

Daniel Wilson
(Federal Reserve Bank of San Francisco)

September 15, 2017
Next Generation Researchers Initiative,
National Academies of Sciences, Engineering, and Medicine

*The views expressed in this paper are those of the authors should not be attributed to the Federal Reserve Bank of San Francisco or the Federal Reserve System.
Introduction

- Fiscal Incentives are an important piece of overall government support of scientific research
 - Distinct from direct government spending on scientific research
 - E.g., research done by government agencies (DARPA, NOAA, etc.)
 - Grants to academic research (NSF, NIH, etc.)
 - Fiscal incentives are indirect government spending aimed at incentivizing private sector research
 - Motivated by economic theory:
 - Social returns to research are greater than private returns, implying private will underinvest in research relative to social optimum
 - Yet, profit-maximizing firms better able to identify needed/wanted innovations
Outline of My Remarks

- Primer on Types of Fiscal Incentives for Scientific Research
- Landscape of Fiscal Incentives for Scientific Research in the U.S.
 - Current incentives
 - Recent history of incentives
- Evidence on the effects and effectiveness of fiscal incentives for scientific research
Primer on Types of Fiscal Incentives for Research

- Federal and State
- Tax Incentives
 - R&D Tax Credits
 - Sector-specific tax incentives
 - E.g., investment or job creation tax credits for “high-tech” sectors (often biotech)
 - Property tax exemptions/abatements for high-tech sectors
 - Lower/zero tax rates on income from Intellectual Property (IP)
 - Some states (e.g., Delaware) do not tax IP royalties
 - Similarly, “patent boxes” used in Europe
- Grants/Subsidies to private firms
Landscape of U.S. Fiscal Research Incentives

- **Current Federal R&D Tax Credit**
 - Regular research credit
 - Credit equal to 20% of qualified R&D expenditures above “base amount”
 - Base amount is recent sales times average R&D-to-sales ratio over 1984 – 1988 (or recent R&D-to-sales ratio for newer businesses).
 - Alternative simplified credit (ASC)
 - Credit equal to 14% of qualified R&D expenditures above base amount
 - Base amount equals 50% of average R&D over prior 3 years.
 - Basic research credit
 - For companies that partner with non-profit entities like universities or research institutes to conduct basic research
 - for “scientific knowledge not having a specific commercial objective”
Landscape of U.S. Fiscal Research Incentives

- History of Federal R&D Tax Credit
 - Established in 1981
 - Temporarily extended 16 times since
 - Made permanent on Dec. 18, 2015
Landscape of U.S. Fiscal Research Incentives

- History of State R&D Tax Credits

Figure 1. Number and Average Value of State R&D Tax Credits in the U.S., 1981-2006

Source: Author's Calculations
Effective R&D Tax Credit Rates, 2006

R&D Tax Credit Rate
0.1 to 0.2 (6)
0.06 to 0.1 (6)
0.05 (6)
0.009 to 0.046 (6)
0.003 to 0.009 (7)
0 (20)

R&D Tax Credit Rate

0.1 to 0.2
0.06 to 0.1
0.05
0.009 to 0.046
0.003 to 0.009
0
Biotech Tax Incentives

<table>
<thead>
<tr>
<th>State</th>
<th>Year</th>
<th>Credit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland</td>
<td>2008 - present</td>
<td>Income Tax Credit for early-stage biotech companies</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2009 - present</td>
<td>"Life Sciences Tax Incentive Program": Investment tax credit, special sales tax exemptions, refundable research tax credit</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1996 - present</td>
<td>"Business Employment Incentive Program" (BEIP). Broad-based grant for job creation, with a lower job-creation qualifying threshold for biotech and "emerging high technology." Also provides financial assistance for companies in these sectors.</td>
</tr>
<tr>
<td>Arkansas</td>
<td>2003 - present</td>
<td>JCTC. Sales tax refunds, and R&D Tax credits with higher subsidies for "targeted businesses," which consists of: (i) Advanced materials and manufacturing systems; (ii) Agriculture, food and environmental sciences; (iii) Biotechnology, bioengineering and life sciences; (iv) Information technology; (v) Transportation logistics; and (vi) Bio-based products."</td>
</tr>
<tr>
<td>Colorado</td>
<td>1999 - present</td>
<td>Biotech Sales and Use Tax Refund</td>
</tr>
<tr>
<td>Washington</td>
<td>2004 - present</td>
<td>High Tech Business & Organization Credit for R&D Spending. Includes the "Biotechnology & Medical Device Manufacturing Sales & Use Tax Deferral/Waiver"</td>
</tr>
<tr>
<td>Maine</td>
<td>1997 - present</td>
<td>Sales tax exemption on machinery, equipment, instruments, and supplies for biotech research</td>
</tr>
<tr>
<td>Missouri</td>
<td>1999 - 2003</td>
<td>State & local sales or use tax exemption for life sciences companies (which is just slightly broader than the sales and use tax exemptions available to most manufacturers)</td>
</tr>
<tr>
<td>Florida</td>
<td>2002 - present</td>
<td>Specialized incentives and tax credits, (more technically, the biomedical industry was reclassified as "high-impact", so that qualified companies could be eligible for the state's preexisting capital investment tax credits and the High Impact Performance Incentive (a JCTC-type program)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1984 - present</td>
<td>Has the North Carolina Biotechnology Center which make low interest loans to biotech start-ups.</td>
</tr>
<tr>
<td>California</td>
<td>2004 - present</td>
<td>California Stem Cell Research and Cures Act, which provides biotech research grants</td>
</tr>
</tbody>
</table>
Effectiveness of Fiscal Research Incentives

Studies of Federal R&D Tax Credits

- Recent studies suggest firms’ qualified R&D expenditures are quite responsive to changes in R&D tax treatment
 - Dechezleprêtre, et al. (2016), Agrawal, et al. (2014),
 - However, concerns that some of response is simply relabeling
- So jury’s still out to some extent
Effectiveness of Fiscal Research Incentives

- Cross-state variation suggests big effects
 - Estimates R&D elasticity with respect to (1) in-state R&D tax treatment and (2) out-of-state R&D tax treatment
 - Estimates long-run elasticity of R&D with respect to in-state cost is about -2.5
 - But elasticity of R&D with respect to out-of-state cost is +2.5, implying zero-sum game across states.
 - Firms may be very responsive in terms of R&D location but not necessarily total national/global amount
Effectiveness of Fiscal Research Incentives

- Similarly, Moretti & Wilson (2017 AER) finds the geographical location of star scientists within the U.S. is very sensitive to state taxes.

- State-to-state migration rates of star scientists – identified from patent data – change in response to changes in tax differentials between origin and destination states.

- Sensitivity to corporate tax rate, individual tax rate, and tax credits (including R&D credit)
Moretti & Wilson (2014):

- Adoption of subsidies for biotech employers by a state raises number of star biotech scientists in-state by about 15% over a three year period.
- A 10% decline in the user cost of capital induced by an increase in R&D tax incentives raises the number of biotech stars by 22%. (elasticity = -2.2)
- Gains mostly due to relocation of star scientists to adopting states, with limited effect on productivity of incumbent scientists already in the state.
- Gains concentrated among private sector inventors.
- Little effect of subsidies on academic researchers, consistent with fact their incentives are unaffected.
Conclusion

- There are a host of federal and state fiscal incentives aimed at stimulating scientific research by the private sector.

- Economic research shows businesses and individuals are quite responsive to these incentives.

- But much of responsiveness may be relabeling and/or relocating research activities to take advantage of fiscal incentives.

- Jury’s still out on whether incentives increase total amount of research that gets done.