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Arthur Samuel coined term “Machine Learning”

) Deep Neural Network
In 1959 S m (Pretraining)
Perceptron T
i (Backpropagation) |
&
n
Perceptron
\ Galden Age A Dark Age (Al Winter™) y
Electronic Brain

1930 1960 1970 1980 1990 2000 2010
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Definition Challenges
Machine learning (ML) is a = Data Is Discrete or continuous?
field of artificial intelligence that = Qualitative or Quantitative outcome?
uses statistical techniques to = Low or High dimensionality in the Data?
give computer systems the = Non-linear relationships in the data?
ability to "learn” from data, = Complete data?
without being explicitly = Known dependencies in the data?
programmed. - Wikipedia = Model interpretation needed?
Raw data Clean data Features Model Results
h&" processing G T CC G | extacton ety b Wes | Training - Evaluation
W "| TTAGT " |l s e T -
CGTASQG ,GACJTT. “5 d.-ﬁ.m e o N
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ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

Pon(¥ = cIX =) Pou (Y = clX = x)

"™

pyp(Y = clX = x)

MACHINE LEARNING .

Algorithms whose performance improve

as they are exposed to more data over time ol

/

DEEP gl
’
Negative object y=-1 Negative object y=1
LEARNING | -

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

https://www.act-on.com/bloqg/3-things-about-machine-learning-every-marketer-needs-to-know/



https://www.act-on.com/blog/3-things-about-machine-learning-every-marketer-needs-to-know/
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Same Methods Improved algorithms in New type of method
terms of code or processors

SVM HPC SVM CNN
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“The term
- More than 100 upregulated IGFBP2, 3 as biomarkers for early
ta)‘l(t))l;‘gg‘l;jkiﬁ br(?;?ésg (t)?y [ genes in pancreatic cancer cell] diagnosis of pancreatic cancer

of medical signs —
that is, objective q
iIndications of
medical state

Protein level analysis
in plasma -

\ (" Auto sample Micro LC-MS/MS Auto analysis \
preparation system

Observed from _ Antibody-based K _ LI : ._ = i
OUtS|de the patlent — \_ proteomics ) \ LC-MS/MS-based proteomics )
WhICh can be Biomarker Biomarker validation
measured PR

accurately and https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161009

reproducibly_ " https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078627/pdf/nihms259967.pdf



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078627/pdf/nihms259967.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161009
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https://systemsbiology.org/about/what-is-systems-biology/
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ORGAN INDIVIDUAL SOCIAL NETWORKS
NETWORKS

CELLULAR
NETWORKS

@ © Institute for

Systems Biology




%7/ Machine Learning Needs for Biomarker

Notwest  DISCOVery from Big Data - Interpretation

NATIONAL LABOR

 Biologists need to understand the context that multiple markers
work together to infer mechanism.

 The clinicians need to know

which markers to build assays.

% |Jf! \
S L
o \ 1” (
o ]
I Healthy Direct HbA1c Assay
= (Enzymatic, On-Board Lysis)
Q = [FEF]1 pz168C-K
E j E 1 x 20.0 mL Lysis Buffer ce E [:m
s 7 e DN jmemn SHRme.
S 0 L e = / ' m Hk | e d
Lﬁ : Pl‘DtEDI‘I’I’E 5 "?* 1-;:_'.' E " D] HAXXXXXX-XX-XX £ XXXX-XX-XX
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Sun and Hu, (2016) adv Gent
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Task
Most Common |
Decisi  Why did you select that?
o Machine R eC|S|ondor_ « What is your confidence
Training Learned ecommendation in that decision?

Learning

Data Function

 What causes you to fail?
« Can | correct an error?

Process

e | understand why you
selected that.

_ e | understand why you

Explainable Explainable Y did not select another.
Model Interface B, /- | understand where your

successes and failures

are.

Explainable

Machine
Learning
Process

Training

Data

https://www.darpa.mil/program/explainable-artificial-intelligence



https://www.darpa.mil/program/explainable-artificial-intelligence
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PwC Al
predictions
for 2018

2018 Al predictions
pwc.com/us/Al2018

. Al will impact employers before it impacts employment
. Al will come down to earth—and get to work
. Al will help answer the big question about data

. Functional specialists, not techies, will decide the Al talent race

. Cyberattacks will be more powerful because of Al—but so

will cyberdefense

. Opening Al's black box will become a priority
. Nations will spar over Al

. Pressure for responsible Al won’t be on tech companies alone

-services/assets/ai-predictions-2018-report.pdf


https://www.pwc.com/us/en/advisory-services/assets/ai-predictions-2018-report.pdf
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As we let Al take over higher-risk tasks we will need to be able to

answer why a decision is made or trust in the systems will be
broken:

« Why was my mortgage turned down?

 Why is this person being stopped at the airport?
« Why did the self-driving car move right?

_________________________ I
' 6. Opening AI's black box will become a priority 1|

7. Nations will spar over Al

8. Pressure for responsible Al won’t be on tech companies alone

2018 Al predictions
pwc.com/us/Al2018

https://www.pwc.com/us/en/advisory-services/assets/ai-predictions-2018-report.pdf
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Explainability
Understanding reasoning
behind each decision

Transparency ---- i -——--  Provability
Understanding of | | i Mathematical
Al modeldecision | | |  certainty behind

I ) I
| |

making decisions

Source: PwC
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Clinical Research - DAISY ... follows 2542 high-risk

The Diabetes Auto Immunity Study in the Young -
started in July 1993 and has been continuously
funded by the National Institutes of Health. The

primary goal of DAISY is to learn how genes and

The Diabetes Auto Immunity Study in the Young -~ children with a diabetic relative
Infections, diets, genes and
Immunological markers are

20 compared in children who have

1) diabetes. In order to do this, the study follows - s d I d .
2542 high-risk children with a diabetic relative (a /{{[’6)},.)([_{ ____—_— eve Ope pancre atIC

sibling or parent) and children without a diabetic —_____——‘ |nf|am matlon and dlabetes Wlth

the environment interact to cause childhood (type

relative but found to have high genetic risk by ____m .

screening of 30,000 Denver newborns. Infections, - A ﬁ th Ose WhO remal ned healthy.
diets, genes and immunological markers are ; v

compared in children who have developed u

pancreatic inflammation and diabetes with those

who remained healthy. Investigators led by Dr. TE D DY haS Screened 424,000

Marian Rewers were able to map out the events leading to childhood diabetes. For instance, they developed

immunological and genetic tests that can identify children who will develop diabetes in the next 5-10 years; Ch I Id ren In EU rO pe and
they d trated that routine i izati d baby milk f las based ‘s milk do not i th | " " "
ey demonstrate at routine immunizations and baby milk formulas based on cow’s milk do not increase ,,, Amerlca and IS fOl |OW|ng 8766

risk for diabetes; that omega free fatty acids may be protective, but certain viral infections increase the risk. R

On the foundations of DAISY, the National Institutes of Health funded an international consortium - The ,/’ th Ose at h | g heSt r|Sk_

Environmental Determinants of Diabetes in the Young (TEDDY). TEDDY has screened 424,000 children in

Europe and America and is following 8766 those at the highest risk. DAISY and TEDDY are likely to deliver

definitive answers concerning the cause and prevention of childhood diabetes.


http://www.daisycolorado.org/

i :"’f/ Current Research In Integrative and
ormg * acCiTIC

Northwest  |[Nterpretable Machine Learning

Goal: Focus on identifying features that
work In combination across multiple omics
and meta-data that can predict a disease
versus control state

Approach: Integrative machine learning in
combination with feature selection that
models uncertainty in the solution

Webb-Robertson et al., 2009 Pac Symp Biocomput
Beagley et al., 2010, Bioinformatics
Webb-Robertson et al., 2012 J Biomed Biotechnol
Webb-Robertson et al., 2017 CSCI
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e® Patient 5
Metadata

— 4 Metabolite 1469

»

~ 'g )
—72 Genetic 106
|/

—9%3 Proteins 4004

“ohe MRM
* Proteins

True Positive Rate

196

“:'.1 Cytokines 36

5,816 potential markers

=

0.8

0.6

0.4

0.2

0.0

E
-
r.r
_I‘ﬂ'
-

— All features
— RFE (25%)
— RFE (50%)
~— ROFI-P3 (50%)

0.0 02 0.4 0.6
False Positive Rate

Good Performance

Hypothesis: Biomarker panels can differentiate the control group
from the diabetic endpoints prior to clinical symptoms.

% Selected
100
100
100

© O
o O

98

0 © © O O
© O Fr NN N

00)
©

Clinical Markers
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Biomarker Discovery Is
a complex task and
machine learning plays
one small role

e Silver-bullets are
unlikely and thus
Integration Is becoming
more important

e Understanding
uncertainty Is a
necessity — validation
IS expensive

Analytical validity

Accuracy - Reliability - Reproducibility

d = Machine Learning Biomarker Discovery

Clinical validity

Association with clinical outcome

Biomarker 3
discovery >
paradigm 2

Guidelines & Requirements

Regulatory compliance
https://www.mdpi.com/1422-0067/17/9/1555/htm

Ay)nn jeauld
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Focus on how machine learning can improve or speed up the
translation to clinic.
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