

Towards a Unified Theory of Learning and Information

Ibrahim Alabdulmohsin

November 2018

Key Takeaway

Q: When can we extrapolate from the **past** into the **future**?

A: Traditional approaches include statistical tools (e.g. VC theory, covering numbers, and multiple hypothesis testing) and algorithmic tools (e.g. stability).

However, there is a recent surge of interest in using **Information Theory** to answer this question.

- *Advantages:* robust guarantees, adaptive learning, general setting, simplified analysis, new tools, unifies results ...etc.

Background

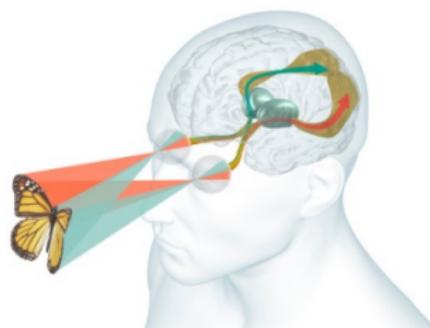
A Bit of History

Ibn Al-Haitham (Alhazen) wrote his celebrated book *Optics* in around 1015 AD.

- 1 Introduced the scientific method, and emphasized the role of empirical evidence.
- 2 Established, among others: light travel in straight lines, eyes are not the source of light, refraction and reflection, ... etc.

Ibn Al-Haitham is less known for a key significant contribution he made in his *Optics*.

He argued that “[perception was inferential](#)”.

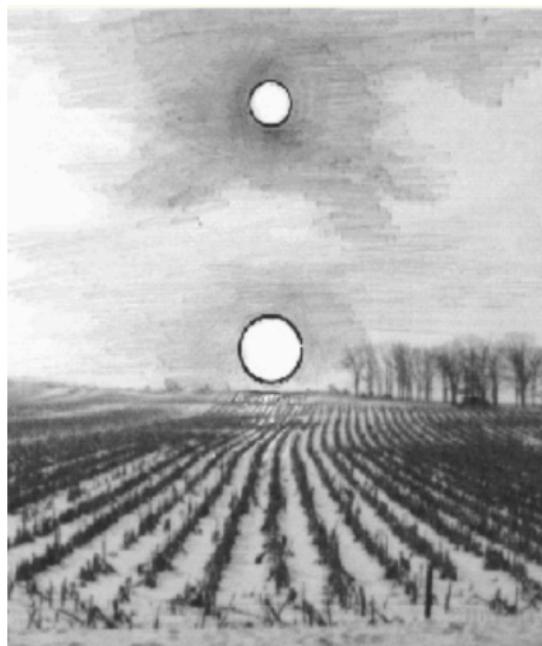


Ibn Al-Haitham is less known for a key significant contribution he made in his *Optics*.

He argued that “**perception was inferential**”.

What we **observe** in “nature” may **not** be a phenomenon of nature.
It could be a phenomenon of **the human mind**.

The Moon Illusion



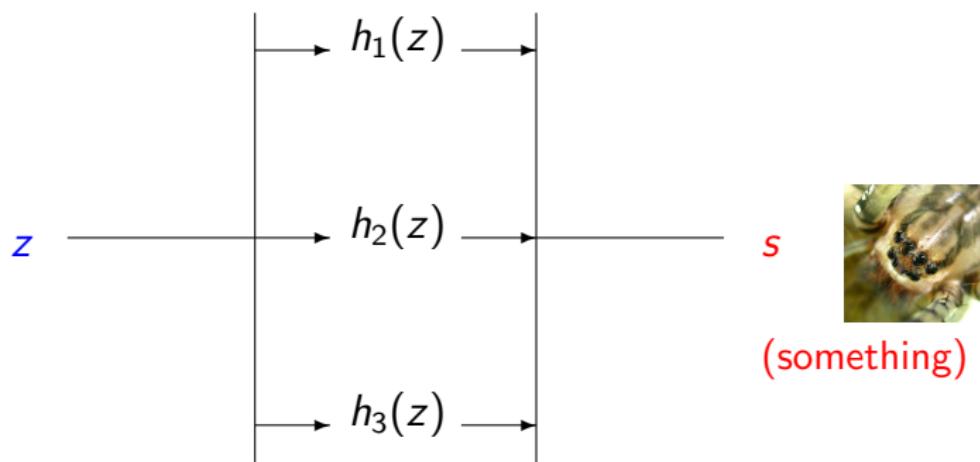
How Does it Work?

A possible explanation (*Angular Size-Contrast Theory*):

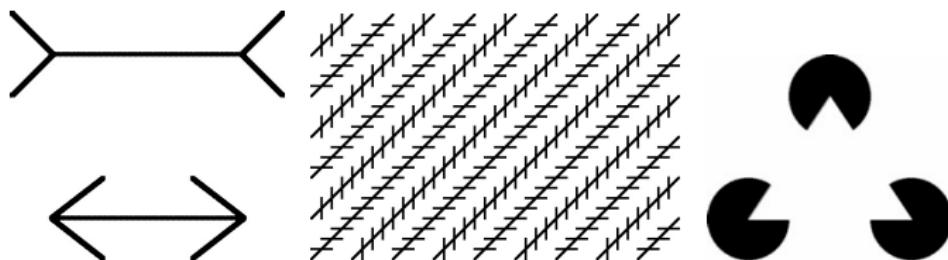
- 1 We can perceive the distance to the horizon (triangulation).
- 2 Objects at that distance are expected to be barely visible.
- 3 The moon is not barely visible.
- 4 Therefore, the moon must be really big. (Interpretation)

How does it work?

observation **abstraction** **perception**



Today, Ibn Al-Haitham's model is taken for granted. Many other optical illusions have been discovered and popularized.



Why?

Q: Why does the brain create many layers of abstractions?

A: To extract meaningful patterns that will continue to hold in the future. This is called **generalization**.

- It does not help to memorize the past because experience will never be repeated exactly.

Generalization is a key goal in any machine learning algorithm.

- 1 computer vision
- 2 intrusion detection
- 3 spam filtering
- 4 demand forecasting
- 5 ...

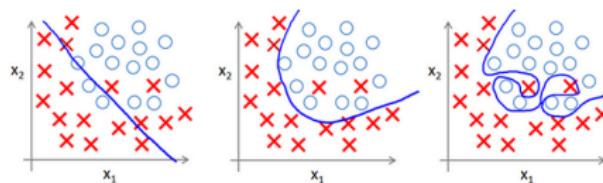
Conclusions based on experience may not always generalize:

- E.g. Fear of “Friday the 13th”

What are the necessary and sufficient conditions for generalization?

Answering this questions will have applications for:

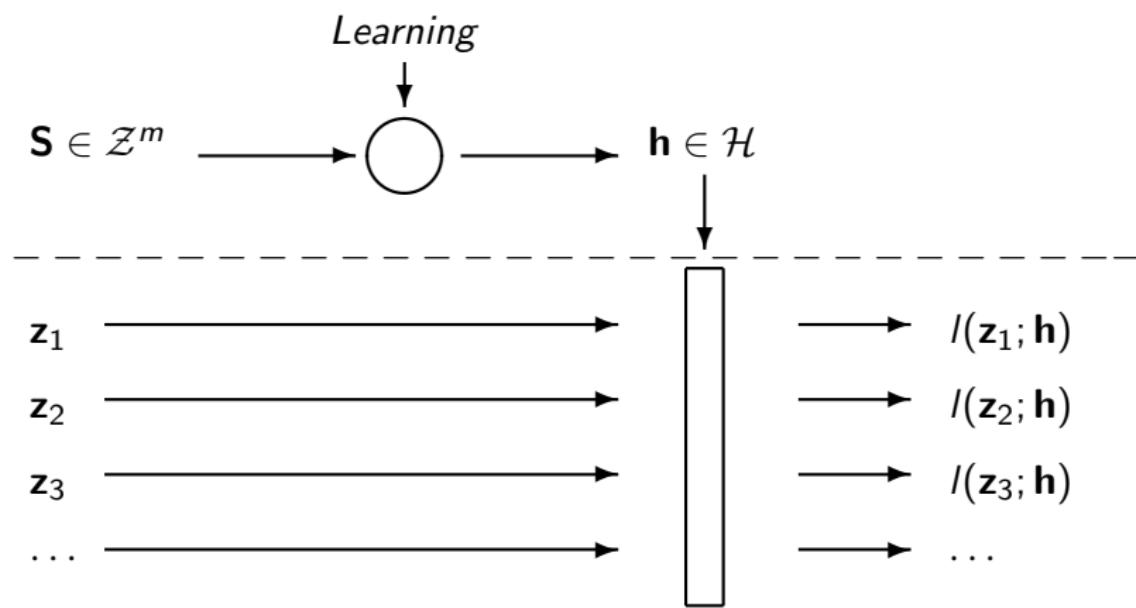
- *Quantifying Uncertainty*
- *Performing Model Selection*
- *Developing Better Machine Learning Algorithms*
- *Gaining Qualitative Insight*
- ...



Learning and Information

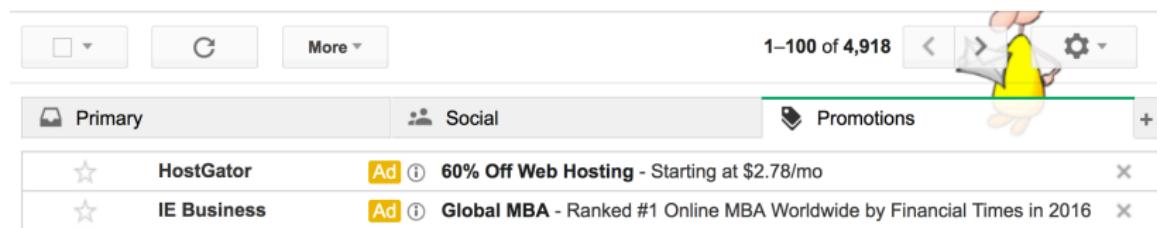
Mathematical Formalism

$$\text{Generalization} = \text{Future} - \text{Past}$$



Example 1

Consider a classification task



We want to **minimize** the misclassification error rate.

- Early systems used expert advice to create rules manually. Did not work well! In fact, experts disagreed.
- Optimization based on data solved the problem successfully.

Example 2

Consider a clustering task (e.g. location assignment, market segmentation, news aggregation, topic discovery, community detection)

Top Stories

 Federal Judge Blocks Trump's Latest Travel Ban Nationwide

New York Times · 3 hours ago

Hours after a federal judge blocked his revised travel ban, President Trump slammed the ruling at a rally in Nashville. By THE NEW YORK TIMES on Publish Date March 15, 2017.

The Latest: Government calls ruling flawed, vows court fight. Washington Post

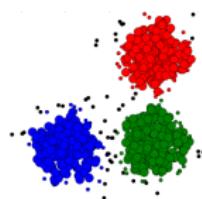
Trump blasts court ruling blocking revised travel order. The Hill

[See realtime coverage](#)

Opinion: Q&A: Trump Travel Ban Faces Key Test in Multiple Courtrooms

U.S. News & World Report

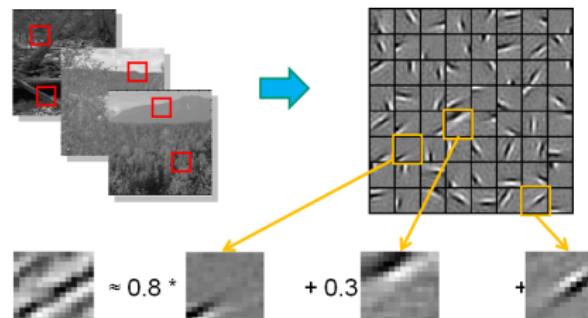
Associated Press



We want to **minimize** the intra-cluster distances and **maximize** the inter-cluster distances.

Example 3

Consider a sparse coding task:



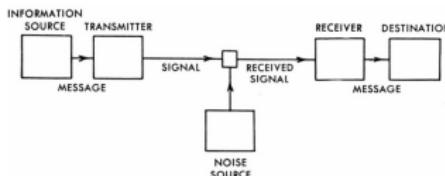
(image credit: Andrew Ng)

■ Denoising and Compression

We want to **minimize** the description length and **minimize** the information loss.

Information-Theoretic Approach

A learning algorithm as a **channel** from \mathcal{Z}^m to \mathcal{H} . From this, we define a “learning capacity” $C(\mathcal{L})$ for machine learning algorithms.



- Channel capacity is not restricted to “communication” channels *per se*. More generally, it is about **random variables**.
- Given two random variables \mathbf{x} and \mathbf{y} , the conditional distribution $p(\mathbf{y} | \mathbf{x})$ defines a channel.

It can be shown that $C(\mathcal{L})$ captures all of the contributions to the risk of over-fitting.

- **Finite Domain:**

If $|\mathcal{Z}| < \infty$, then $C(\mathcal{L}) \lesssim \sqrt{\frac{|\mathcal{Z}|-1}{2\pi m}}$.

- **Finite Hypothesis Space:**

If $|\mathcal{H}| < \infty$, then $C(\mathcal{L}) \leq \sqrt{\frac{\log |\mathcal{H}|}{2m}}$.

- **Differential Privacy:**

If \mathcal{L} is (ϵ, δ) differentially private, then $C(\mathcal{L}) \leq (e^\epsilon - 1 + \delta)/2$.

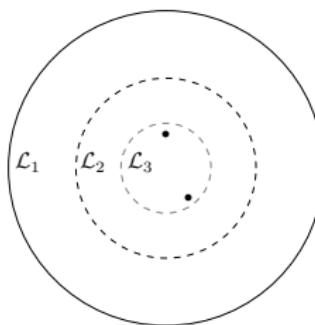
- **Stochastic Convex Optimization:** $C(\mathcal{L}) \leq \sqrt{d/(2m)}$.

Qualitative Insight

- **Stability:** A learning algorithm has a small learning capacity if and only if it is algorithmically stable.
- **Information:** A learning algorithm has a small learning capacity if and only if its hypothesis does not reveal a lot of information about the training sample.
- **Composition:** Learning “more” about the training sample, e.g. (h_1, h_2) , increases the risk for overfitting, compared to h_1 .
- **Universality:** A problem is learnable *if and only if* it is learnable via an algorithm with a vanishing learning capacity.

- **Data Processing Inequality:** If $\mathbf{s} \rightarrow \mathbf{h}_1 \rightarrow \mathbf{h}_2$, then the risk of overfitting in \mathbf{h}_2 is smaller.
 - E.g. decision tree pruning and sparsification.
 - Induces a partial order on learning algorithms.

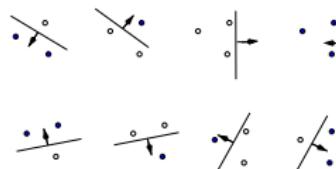
$$\mathcal{L}_2 \subseteq \mathcal{L}_1 \quad \Leftrightarrow \quad \mathbf{s} \rightarrow \mathbf{h}_1 \rightarrow \mathbf{h}_2$$



Equivalence Result

In Learning Theory: The **VC dimension**.

- Agnostic PAC learnability \equiv finite VC dimension.



In Information Theory: The **Shannon channel capacity**.

- Highest achievable information rate with arbitrarily small error probability.

Note: An equivalence relation exists between the two quantities if the channel capacity is measured in the total variation distance.

Applications

Large Scale Optimization

$$\text{Accuracy} = \text{Empirical Risk} + \text{Generalization Risk}$$

- Stochastic convex optimization can be parallelized trivially (e.g. SVM, logistic regression, least squares, ...etc).

Algorithm	Test Error	Training Time
ERM ($m = 50,000$)	$14.8 \pm 0.3\%$	2.93s
ERM ($m = 1,000$)	$15.3 \pm 0.5\%$	0.03s
Parallelized ($K = 50, m = 1,000$)	$14.8 \pm 0.1\%$	0.03s

Table: ℓ_2 regularized logistic regression on the MiniBooNE Particle Identification problem.

Model Selection

Uniform Information Criterion: Model selection according to

$$UIC = \mathbb{E}_{z \sim S}[I(\hat{h}, z)] + \sqrt{\frac{d}{2m}}, \text{ where } d \text{ is the number of learned parameters.}$$

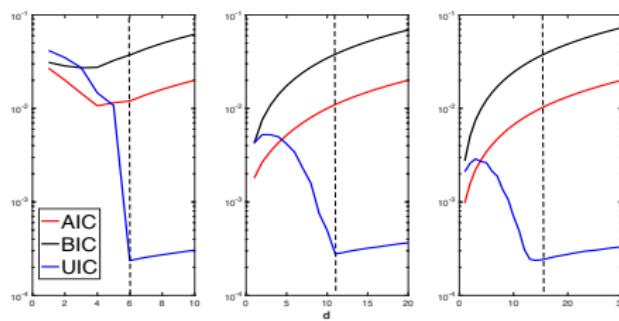


Figure: Least-squares polynomial regression where $\mathcal{X} = [-1, +1]$, $\mathbf{y} = f(\mathbf{x}) + \epsilon$, f is a polynomial of degree d^* (marked by dashed line), and ϵ is white Gaussian noise.

Future Research Directions

Adaptive Learning

A typical machine learning project involves multiple rounds of analysis (e.g. feature selection, normalization, cross validation, trying multiple algorithms, ...etc). The chain rule provides a simple recipe for analyzing the generalization risk.

- Given the analysis conducted (e.g. in the form of a code or a flowchart), can we design a procedure for estimating the generalization risk?

Information Criterion

Information criteria (such as BIC), are sometimes used in the unsupervised learning setting for model selection (e.g. in k -means clustering).

- Given that uniform generalization is developed in the *general* setting of learning, should the learning capacity serve as a model selection criterion in the unsupervised setting? Why or why not?

References

Learning Capacity

- Alabdulmohsin, “Algorithmic Stability and Uniform Generalization.” NIPS, 2015.
- Alabdulmohsin, “An information-theoretic route from generalization in expectation to generalization in probability.” AISTATS, 2017.
- Alabdulmohsin, “Information-Theoretic Guarantees for ERM with Applications to Model Selection and Large-Scale Optimization.” ICML, 2018.

The Shannon Mutual Information and Adaptive Learning

- D Russo and J Zou. “Controlling bias in adaptive data analysis using information theory.” AISTATS, 2017.

Generalization via Differential Privacy

- C Dwork, V Feldman, M Hardt, T Pitassi, O Reingold, and A Roth. “[Preserving statistical validity in adaptive data analysis.](#)” STOC 2015.

Generalization based on leave-one-out mutual information

- M Raginsky, A Rakhlin, M Tsao, Y Wu, and A Xu.
“[Information-theoretic analysis of stability and bias of learning algorithms.](#)” ITW, 2016.
- A Xu, M Raginsky. “[Information-theoretic analysis of generalization capability of learning algorithms.](#)” NIPS 2017.