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As building skins act as filters regulating energy flow between building interior and exterior.
Conventional shading devices can decrease building annual cooling load by 20%.

Most conventional devices exhibit performance deficiencies and demonstrate a need for adaptive building skins
[shape shifting mechanisms] that respond to multiple variables including weather, context and space occupancy.

“Buildings and climate change: a summary for decision makers,” United Nations Environmental Programme, Sustainable Buildings and Climate Initiative, Paris, 2009,



Why Shape
§enijx)tjenogafd)aptive building skins Is to

actively moderate the Influence of weather
conditions on the Interior environment of
buildings.

Current adaptive skins rely on rigid body motions,
complex hinges and actuation devices. These
attributes are obstacles to their broader adoption
In low-carbon buildings.
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Why Shape
Shifting?

The core idea of’soft adaptive skins is that they
exploit the systems’ elasticity to respond to

stimuli.

However, designing such a skin is a challenging
task due to the Interaction between geometry,
elasticity and environmental performance.

If successful, these skins will reduce energy
consumption in the construction industry.
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Programmable /matter IS matter which has the
ability to chang? its physical properties (shape,
density, optical properties, moduli, conductivity,
etc.) In a programmable fashion, based upon
user Input or autonomous sensing.




Moving to
Hygroscopic

Wood tends to absorb moisture from the
air when the relative humidity is high,
and to lose it when the relative humidity
IS low. Moisture absorbed into the cell
walls causes wood to shrink and swell
as the moisture content changes with
the relative humidity of the surrounding
air.
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Moving to
Hygroscopic

Once all the parameters related to
moisture content, humidity, grain
orientation, and the shrinking and
swelling of wood are known and can be
modeled, a regulated and adaptive
scenario of controlled movement of

wood, bilayers and laminated timber can
be generated, leading to a soft
responsive skin, without the use of
complex hard mechanical procedures or
equipment.
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Moving to Physics Modeling

Once all the parameters related to moisture content, humidity, grain orientation, and the shrinking and

Hyg rOS C O p | C swelling of wood are known and can be modeled, a regulated and adaptive scenario of controlled
movement of wood, bilayers and laminated timber can be generated, leading to a soft responsive

skin, without the use of complex hard mechanical procedures or equipment.



|n3pirati0ns Hygroscopic behavior of wood

The behavior of different types of wood in reaction to varying levels of humidity in the surrounding

environment at the interface between the exterior and interior of a space
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INns D irations Lightweight and Tensegrity Structures

Tensegrity and lightweight structures with the core principle of isolated components in compression in

a continuous network under tension



Inspirati()ns Shape Memory Alloys

Structures and materials that "remember" their original shape and when deformed return to their pre-

deformed shape when heated



Early Experiments Samples

The behavior of several samples of ash and beech veneer with varying direction and orientation of

o grain was tested under the effect of wetting.
Testing with different veneer samples
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Early Experiment Samples

The behavior of several samples of ash and beech veneer with varying direction and orientation of

grain was tested under the effect of wetting.

Testing with different veneer samples




Early Experiments Patterns

Several patterns and shapes were explored with different wood veneer samples and grain

_ _ _ orientations
Experimenting with patterns on ash & beech veneer
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Precedents

The i1dea of the an adaptive shape shifting
facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
of daylighting, ventilation, and visibility, and
features different behaviors of wood In

different directions and orientations.
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facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
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features different behaviors of wood In
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22



Precedents

The i1dea of the an adaptive shape shifting
facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
of daylighting, ventilation, and visibility, and
features different behaviors of wood In
different directions and orientations.

! N il s —) ~—
—d 4 Y |

'O.,)' .’ ‘ 'Q ﬁ ﬁ

AR O B

& (%0008 eleleTe]

—

L'Institut Du Monde Arabe | JEAN NOUVEL




Precedents

The i1dea of the an adaptive shape shifting
facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
of daylighting, ventilation, and visibility, and
features different behaviors of wood In

Felolalioiiin)

== > different directions and orientations.
- L -

- =

T

: = --a

S = S =

...‘ ; ..’ L'Institut Du Monde Arabe | JEAN NOUVEL

- -



Precedents

The 1dea of the an adaptive shape shifting
facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
of daylighting, ventilation, and visibility, and
features different behaviors of wood In
different directions and orientations.

Abu Dhabi Louvre Museum | JEAN NOUVEL

AS



Precedents

The i1dea of the an adaptive shape shifting
facade relied In its core on the parametric
modeling of a prototype that mimics the
behavior of the Islamic Mashrabiya in terms
of daylighting, ventilation, and visibility, and
features different behaviors of wood In
different directions and orientations.

Abu Dhabi Louvre Museum | JEAN NOUVEL




Programming wood initial configuration
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Input Parameters

Identifying Hygroscopic
Design Parameters
Types of wood (soft and hardwood)

Thickness of wood

Grain orientation
Moisture content in wood
Aspect ratio of sample

Form of wood sample

Multi layers fabrication Techniques

Analytical Approaches

Physical Experimentations

. Numerical Analysis

Methods for Evaluating
the Response Motion

Tracking tangible Interface

Computational Interface

Computational Analysis

Response Motion Parametersvia
Physical Experimentations

Speed response rate

Type of motion

Direction of motion

Architectural prototypes
Interactive skin prototypes

Full scale facades



Inputs (Hygroscopic Design
Parameters)

Types of wood:
Softwood: Fir
Hardwood: Beech

Thickness of wood
Veneer (0.5 mm)

Grain orientation
Tangential

Moisture content in wood
Variable according to the
humidity level in the chamber

Aspect ratio of sample
1:3 Length to width ratio

Form of wood sample
Rectangular form

Multi layers fabrication Techniques
Dry Lamination of two layers
(Beech + Fir) using
Polyurethane glue

Tracking / Analysis of Motion

1. Image Analysis System

Tools

2D Tracking Software

Angle of deflection in relation to

variation in humidity levels
through time

1. Image Analysis

Video Camera

Kinovea Software

2. Sensing Motion mechanism

2. Physical Experiment
setting

Smart Material Interface

Passive motion response of
material to the external Stimuli

Tangible Interface

Setting of the experiment

(sealed humidity chamber, Flex
sensor, Arduino kit)

Digital Interface

Firefly Plugin to connect the
Arduino processing unitto
Grasshopper script.

Sealed Humidity Chamber

Humidity / Temperature
sensor

Flex sensors

Arduino kit

3. Grasshopper

Firefly plugin

Firefly Plugin to connect
the Arduino processing
unit to Grasshopper
script to measure and
record the angle of
deflection
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Hygromorphic behavior of wood veneer samples

Abdelmohsen, S., Adriaenssens, S., El-Dabaa, R., Gabriele, S., Olivieri, L. and Teresi, L. (2019),
Programmable Matter: A Multi-Physics Modeling Approach for Low-Tech Architectural Adaptive

AAAAAA

Systems using Hygroscopic Properties of Wood, Computer-Aided Design, 106 (43-53).

Parametric exploration of shape shifting facades

Fir (back side)
Softwood (0.8 mm )

Graun Onentation
(45", 0'rangential, - 45°)

Beech (front side)
Hardwood (1.8 mm )

Cn:‘n Onentation:
(45)

Double Facade - Laminated Vertical Louvers (Fir + Beech )

Fir (back side) |
Softwood (0.8 mm ) |

Gran Orientation: ‘
(45" - 45, 0 Tangential, |
90 Longitudinal ) w

Beech (front side)
Hardwood (1 8 mm)

|
Gran Orientation: 1
(45,-45) |

Double Facade - single layers of each of fir and Beech

Fir (back side)
Softwood (0.8 mm )

Grain Orientation
(45)

Beech (front side) | | g
Hardwood (1.8 mum.)

0 o (Tepecat) INCmasect Denpty
for Paacy

Fir (back side)
Softwood (0.8 mm.)

Gram Onentation:
(0 Tangential , 45,
90 Longitudinal )

Beech (front side)
Hardwood (1 8 mum.)

Grun Onentation,
( 0 Tangential, 90
Longitudinal)

Experimenting with grain orientation & lamination
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Wood is a natural engineering material that has traditionally been
exploited in design for a wide variety of applications. The recent
demand for sustainable material and construction processes in the
construction industry has triggered a renewed interest and research in
the inherent properties of wood and their derived applications, and
specifically for developing low-tech architectural adaptive systems.
This paper focuses on the physical and computational modeling of the
morphing behavior of wood through hygroscopic expansion or
contraction to a high degree of precision. This hygroscopic shrinking
and swelling does not induce mechanical stresses in wood, and thus
alleviates any fatigue challenges. This property is beneficial for any

engineering application subjected to a repeated reversal of loading ——— — —rey — — T
such as adaptive systems. Current calculation models do not simulate ) . \ u

the actual water diffusion process that causes the swelling in all three " 1 | |

wood grain orientations (i.e. the radial, longitudinal and transverse R x ‘. | '/ ¥ 3
directions). Nor do they incorporate changes in mass density due to X ___' 2% { 3x d
water absorption. In this paper, a multi-physics numerical model is ' 1 : 3 aall r !
presented with parameters that have a physical meaning. The control e — Py ——— . ) o
parameter in the model is the relative moisture change in wood, that Ratio 1-1 Ratio 1:2 Ratio 1:3

determines the orthotropic swelling (shrinking) phenomenon and
interacts with the elastic behavior of wood. This model is integrated . . . . . . .
into a programmable matter design approach that combines physical Maximum deflection values in three Tangential beech veneer samples with different aspect ratios
and computational exploration. The approach is illustrated for a
hygromorphic building facade panel. The approaches and algorithms
presented in this paper have further applications for computer-aided
design of smart materials and systems with interchanging
functionalities.

Abdelmohsen, S., Adriaenssens, S., Gabriele, S., Olivieri, L. and El-Dabaa,
R. (2018), Hygroscapes: Innovative Shape Shifting Facades, in Digital Wood
Design (DWD 2018).

Maximum deflection values in three longitudinal beech veneer samples with different aspect ratios
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Wood is a natural engineering material that has traditionally been
exploited in design for a wide variety of applications. The recent
demand for sustainable material and construction processes in the
construction industry has triggered a renewed interest and research in
the inherent properties of wood and their derived applications, and
specifically for developing low-tech architectural adaptive systems.
This paper focuses on the physical and computational modeling of the
morphing behavior of wood through hygroscopic expansion or
contraction to a high degree of precision. This hygroscopic shrinking
and swelling does not induce mechanical stresses in wood, and thus
alleviates any fatigue challenges. This property is beneficial for any
engineering application subjected to a repeated reversal of loading
such as adaptive systems. Current calculation models do not simulate
the actual water diffusion process that causes the swelling in all three
wood grain orientations (i.e. the radial, longitudinal and transverse
directions). Nor do they incorporate changes in mass density due to
water absorption. In this paper, a multi-physics numerical model is
presented with parameters that have a physical meaning. The control
parameter in the model is the relative moisture change in wood, that
determines the orthotropic swelling (shrinking) phenomenon and
interacts with the elastic behavior of wood. This model is integrated
into a programmable matter design approach that combines physical
and computational exploration. The approach is illustrated for a
hygromorphic building facade panel. The approaches and algorithms
presented in this paper have further applications for computer-aided
design of smart materials and systems with interchanging
functionalities.

Abdelmohsen, S., Adriaenssens, S., Gabriele, S., Olivieri, L. and El-Dabaa,
R. (2018), Hygroscapes: Innovative Shape Shifting Facades, in Digital Wood
Design (DWD 2018).

Sample used
Fiber orientation
Moisture content
Aspect ratio

8
\

, - . 3
B 1E $Dd - 1

Beech veneer (right)
Tangential

6 %

1:3 (15*5 cm)

Fir veneer (left)
Tangential

6 %

1:31:3 (15*5 cm)
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L
. >

Time-lapse images showing the response of a beech and fir veneer samples exposed to increase in humidity
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Wood is a natural engineering material that has traditionally been
exploited in design for a wide variety of applications. The recent
demand for sustainable material and construction processes in the
construction industry has triggered a renewed interest and research in
the inherent properties of wood and their derived applications, and
specifically for developing low-tech architectural adaptive systems.
This paper focuses on the physical and computational modeling of the
morphing behavior of wood through hygroscopic expansion or
contraction to a high degree of precision. This hygroscopic shrinking
and swelling does not induce mechanical stresses in wood, and thus
alleviates any fatigue challenges. This property is beneficial for any
engineering application subjected to a repeated reversal of loading
such as adaptive systems. Current calculation models do not simulate
the actual water diffusion process that causes the swelling in all three
wood grain orientations (i.e. the radial, longitudinal and transverse
directions). Nor do they incorporate changes in mass density due to
water absorption. In this paper, a multi-physics numerical model is
presented with parameters that have a physical meaning. The control
parameter in the model is the relative moisture change in wood, that
determines the orthotropic swelling (shrinking) phenomenon and
interacts with the elastic behavior of wood. This model is integrated
into a programmable matter design approach that combines physical
and computational exploration. The approach is illustrated for a
hygromorphic building facade panel. The approaches and algorithms
presented in this paper have further applications for computer-aided
design of smart materials and systems with interchanging
functionalities.

Abdelmohsen, S., Adriaenssens, S., Gabriele, S., Olivieri, L. and El-Dabaa,
R. (2018), Hygroscapes: Innovative Shape Shifting Facades, in Digital Wood
Design (DWD 2018,).

Sample used Beech veneer+ polyurethane Tidebond+ aluminum tape

Fiber orientation Tangential, 45, Longitudinal (left to right)
Aspect ratio 1:2 (10*5 cm), while the 45 (8*4 cm)

-

Combining properties to achieve controlled motion (Beech veneer + aluminium sheet)
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Motion grammar elements and process

Productions (P) Semantic rules (K) Robot (high-level) commands (U)

Production 1 Increase in MC Bending the material
, Increase inr
h N Increase in Ah
w. '\;'_‘., Decrease in AL
‘ - Production 2 Decrease in MC Flattening the material
V Decreaseinr

AL

N

Decrease in Ah
Increase in AL

Abdelmohsen, S., Adriaenssens, S., Gabriele, S., Olivieri, L. and El-Dabaa,

R (?Olwggzrg;;jpesr Innovative Shape Shifting Facades, in Digital Wood Sequential response motion of wood Defining productions, semantic rules and robot commands of
esign . . . . . . . .
upon increase in moisture content wood motion in relation to motion grammar




Chamber Setup

Experiment setup inside humidity chamber:
(a) Sealed humidity chamber;

(b) Humidifier;

(c) Humidity and temperature sensor;

(d) Metal clamp;

(e) Bi-layer wood sample

35



B - - e e e e Beech -Hardwood-

Flex sensor

_ Polyurethane
glue

Fir -Softwood
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Smart Material Interface

For the motion sensing experiment, the flex sensor was fixed on the
wood veneer bi-layer sample and connected to the Arduino Uno kit to
measure its bending. The motion response of the wood was captured
by the Flex sensor, and then processed using the Arduino
microcontroller.



Image Analysis

Kinovea software was used to analyse the wood sample
motion by means of evaluating angles and distances on
movable tracked markers in a frame by frame fashion.
a) Adjusting reference marker position

b) Taking angular measurements

c) Initiating frame tracking

d) Recording the output angles

Tracking the motion of wood through image analysis: (a)
Humidifier;

(b) Temperature and humidity sensor;

(c) Metal clamp;

(d) Tracked angle;

(e) Fixed marker point;

(f) Variable point in sample

(g) Tracked frame



Motion Sensing

This loop relates the smart material interface (SMI)
with a digital and a tangible interface

The smart material interface is represented in the
hygroscopic properties of wood to shape shift as a
response to moisture content

The tangible interface is composed of a circuit that
consists of a Flex sensor and an Arduino
microcontroller kit.

The digital interface is composed of the Grasshopper
interface and Firefly plugin definition which are used to
map and store the acquired angles and motion of the
tested wood samples in relation to time.

a) Testing the effect of humidity of the sensor in the
chamber,

b) Fixing the sensor to the bilayer wood sample,

c) Fixing the bilayer wood sample in the humidity
chamber,

d) Recording and evaluating the motion of the bilayer
wood sample using the digital interface.

Tracking the motion of wood through motion sensing:
(a) Wood sample;

(b) Flex sensor;

(c) Arduino Uno;

(d) Breadboard;

(e) Grasshopper interface;

(f) FireFly definition
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Recording Angles E

Sample Length

A Grasshopper script was used to store the variations of angles and tracking and analyzing the response behavior of wood. The digital interface
was used to map, store and evaluate the motion of wood. The tangible interface was read by the Firefly plugin using Grasshopper. Firefly

transmits the real-time motion response of wood to Grasshopper. A parametric Grasshopper script was generated to evaluate, analyze and store
the sample motion.
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Numerical Modeling of Cross-Laminated Timber Samples

Shape-Shifting Facade Prototypes

Abdelmohsen, S., Adriaenssens, S., El-Dabaa, R., Gabriele, S., Olivieri, L. and Teresi, L. (2019),
Programmable Matter: A Multi-Physics Modeling Approach for Low-Tech Architectural Adaptive
Systems using Hygroscopic Properties of Wood, Computer-Aided Design, 106 (43-53).




Non-linear Modeling of Hygroscopic Behavior of Wood Numerical Modeling in COMSOL Multi-physics software

(1) The congruence equations, relating the strain measure E
(aka, Green-5t.Venant strain tensor) to the displacement field u

1, _ _.
E=E(FF—J}.mﬂn u=1uind 02, (1)

with F = Vwu + [I; here F is the deformation gradient, I the
identity tensor, V the gradient operator, and d, {2 the portion of
the boundary with kinematics constraints.

(2) The constitutive prescription, relating the elastic strain Ee to
the elastic stress S, here, we assume the response of wood in the
range of interest to be well represented by the Kirchhoff-5t.Venant
relation:

(a) (b) (c)
5. = CE,, withE. =E —E,. (2)

Parametric numerical modeling for wood behavior with different grain orientations.
The mechanical behavior of the material is described through the
elasticity tensor C (a fourth-order tensor) and the distortion Ep;
in such context, the distortion Eg is called hygroscopic strain and
describes the swelling of the wood caused by a change in moisture
content.

(3) The balance equations, relating the reference stress § = FS.

(aka, Piola-Kirchhoff stress) to the bulk load f and the boundary
load ¢t

div(§)+f =0, in 2, Sn=+tinadf2, (3)

The orthotropic swelling is described by Eg: we assume the
following form for the distortion tensor:

hy 0 O
[Eﬂ]ﬁ‘ — (C — Crff) [H ]_ﬂy [H ]_ﬂ =10 hr O (4)
0 0 hg P

where ¢ and ¢ are the actual and the reference moisture concen-
trations, respectively, and h; with 1 = L, R, T are the hygroscopic
swelling coefficients in the LRT-directions.

Cedar and ash parametric grain study. Top row: Cedar = 0L001 m and Ash = 0.001 m; bottom row: Cedar = 0.001 m and Ash = 0.002 m.



Non-linear Modeling of Hygroscopic Behavior of Wood Numerical Modeling in COMSOL Multi-physics software

The orthotropic stiffness 15 described by ©, and its entries with
respect to the local base are denoted by [C] ﬁ.‘l."n:rigt's representation
of C is used. This notation exploits the symmetries of the three
tensors imvolved in Eq. (2): 5§, and E; are represented by 6 = 1

columnvectors, and C by a 6 x & symmetric matrix, called stiffness
matrix, denoted |Hr|ﬂ as follows:

Sen [(Dgin Dgiz Dz O 0 0
Se2z Dgiz Dgaa Dgzz O 0 0
533 _ | Dmz Dgy Dpgzz 0O 0 0
S5p12 o 0 0 0 Daay 0 0
5p71 0 0 0 ] D ss 0
Sad, L0 0 0 0 0 D),
[ Een1 |
Eexz
Eezz
5
* | 2Eera ()
2Ep33
_EEE'!EI_ ﬁ

It is noted that, by using a base that accounts for the sy mmetry axes
of the material LRT, the matrix [D]; has a simple block structure,
with 55 coupled only with E 4, and 54; only with E;. As aforemen-
tioned, the response of such materials is completely characterized
by nine parameters: three Young moduli Yz, Yg, Yy, three Poisson
moduli vg. vyr, ver, and three shear moduli gigg, pyr. per. While
the stiffness matrix [D] 8 has a cumbersome representation in
terms of these nine parameters, the representation of the flexibility
matrix [G], = [D'] ; is straightforward.

1/Y; —nr/Yr —wr/Yy 0 0 0
| —I"u;'"r;_ ]J"'I'rg —Fﬂlu'rfg 0 0 0
IE] . _plfll'rf]" —Fm'lu'rf[ ],"'ff 0 ] 0
P 0 0 0 Ve 0 0
' 0 0 0 0 1/pyr 0O

0 0 0 0 0 Vpg |,

Gy 0O
=0 GHL (6)

Given |G ]z, the stiffness matrix can be obtained by inverting the
non-zero blocks of the compliance matrix:

—1
D]y = [“;; G'LL 7)

7]




Non-linear Modeling of Hygroscopic Behavior of Wood Physically Modeled Shape Shifting Prototype @

Representation of the local basis.

This transformation is done by means of the rotation tensor Q.
representing the change of base « — B.Letb; = (b, b;, bs); bethe
components of the vector by with respect to the base o} the rotation
tensor @ (see Fig. 7) is represented by the following matrix:

o 31

Thus, given a constitutive relation [5;] g = [C] ﬁ[EE-] g in the local
base 8, the corresponding relation represented with respect to the
base & can be computed by the formulas:

[Sel. = [Q115e]s [Q"] . [Eela = [@" ] [Ec. [Q] (9)
that yields [Se], in terms of [E],
[S:L. = [QI(ICl, ([Q" ] [E:L, Q1)) [Q"] = [T, IE.],. (10)

We note that the change of base for the strain and stress ténsors

involves the product of [Q] square, while that for the stiffness
tensor involves [Q] to the power of four. Similarly, the change of
base for the distortion tensor [H ] # is given by
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[H], = [QI[H],; [Q"]. (11)

-
a

Diamond module (left) — Simulation of the entire fagade (right)
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Conclusions

We exploit the potential of the inherent hygroscopic properties of wood to drive the design of morphing strategies for adaptive
architectural systems by proposing a multi-physics modeling approach.

This approach is augmented with physical explorations on the effect of grain orientation, moisture content, wood types, and
lamination on the deformation of wood.

Hygroscopy induces strains but no, or low, stresses in wood upon water sorption. As a result, fatigue is not an issue, and wood
becomes a preferred low-cost material candidate for adaptive systems that undergo cyclic deformations.

To predict the behavior and deformation of these systems, designers traditionally resorted to analytical beam models and
geometric digital models. What we introduce is a step forward in modeling and numerical simulations, where we present a
generalized orthotropic model for both elastic and hygroscopic behavior, where it is possible to model single or multi-layered
wood, each layer having his own fiber orientation.

This model allows for design exploration of many different layered setups, and can capture complex material deformations and
guantitative design parameters like maximum displacements and stress levels. We combined numerical simulations with physical
explorations into a schematic design approach exemplified by a proof of concept for an adaptive diamond module hygromorphing
facade panel.

Beyond this research, advanced foreseen versions of responsive systems exhibit cognitive and biological models, the anticipation
of desirable preferences, and educating both buildings and their users.
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