

NASA Earth Science Division Update Michael H. Freilich

7 March 2013

OUTLINE

- Science and launch highlights
- On-orbit constellation overview
- Venture Class status/accomplishments/selections/ plans
- Budget reminder
- Mission development status/plans
- ESD on the ISS
- Issues

Monday, February 11, 2013 @ 10:02 a.m. (PST)

The LDCM Observatory was lifted to orbit by a United Launch Alliance Atlas V rocket launching from Vandenberg Air Force Base, Calif. The launch capped a flawless countdown.

The Observatory separated from the Centaur upper stage approximately 79 minutes after launch.

LDCM Mission Overview

LDCM Commissioning Events

(planning dates as of 3/6/13)

ΑCTIVITY	DATE	STATUS
S/C Sub-system Activation (initialize GPS, SADA , SSR, X band, ACS)	Feb. 11-17	Complete
OLI and TIRS power up	Feb. 16	Complete
1st Engineering Burn	Feb. 17	Complete
Began generating and downlinking OLI and TIRS test pattern data	Feb. 17	Complete
Open OLI shutter to begin dryout	Feb. 18	Complete
ACS calibration maneuvers	Feb. 20 - Mar. 3	Complete
TIRS cryocooler launch lock deployment, uncage, and electronics power on	Feb. 24	Complete
Load OLI pixel map	Feb. 26	Complete
TIRS earth shield deployment, Passive cooldown begins	Mar. 4	Complete
TIRS focal plane electronics (FPE) power up, Scene Select Mirror (SSM)		
Activation	Mar. 5	Complete
TIRS Cryogenic Cooldown begins	Mar. 6	In Progress
ACS calibration maneuvers (post earth shield deploy)	Mar. 6 - 12	In Progress
OLI dryout complete, cooldown begins	Mar. 6	In Progress?
First TIRS Preliminary Engineering Data	Mar. 7	
TIRS calibrations begin	Mar. 10	
Ascent Burn 1	Mar. 10	
Ascent Burn 2	Mar. 13	
OLI calibrations begin	Mar. 14	
First OLI Image	Mar. 18	
Goal: Approach 400 scenes / day before Underfly	Mar. 27	
Landsat 7 Underfly	Mar. 28 - Apr. 1	
Ascent Burn 3	Apr. 7	
Ascent Burn 4 - Arrive on WRS-2 Grid	Apr. 11	
WRS-2 16-day cycle demonstration begins	Apr. 26	

AIRBORNE ACTIVITIES: EV-1 (EV-S) Summary Status

- CARVE
 - Data analysis ongoing
- ATTREX
 - Science flights ongoing (mid Jan Feb/Mar)
 - 6 flights total planned, completed (2 March 2013)
- HS3
 - Data analysis ongoing
- DISCOVER-AQ
 - California deployment complete
 - Data analysis ongoing
- AirMOSS
 - Data analysis ongoing
 - Science flights ongoing (local from Ellington Field 13 -18 Feb, Costa Rica 19 Feb – 3 Mar; deployment interrupted to fix instrument)

DISCOVER-AQ California

Ten science flights documented the details of two successive PM2.5 episodes in the San Joaquin Valley

DISCOVER-AO

- 176 flight hours
- P3B, King Air
- UC Davis Mooney also flew

Bakersfield PM2.5

- PODEX/ER-2 collaboration Bakersfield

(Photo taken from ER-2 during PODEX flight on 20 January)

*Orange line (36 ug/m³) is the 24hr average threshold for violating National Ambient Air Quality Standards

Aerosol Scattering from the P-3B shows the build up of fine particles to be concentrated in a shallow layer below 2000 feet.

HSRL-2 on the King Air Maps the Spatial Distribution of Aerosol between ground monitors across the valley

Bakersfield

Fresno

PODEX

Polarimeter Definition Experiment @ NASA Dryden, Jan/Feb 2013

Objective: Airborne field experiment on NASA ER-2 to compare radiometric and **polarimetric** measurements from three instrument designs (alphabetically) AirMSPI Multiangle SpectroPolarimetric Imager (JPL) PACS Passive Aerosol and Cloud Suite (UMBC/Goddard) RSP Research Scanning Polarimeter (GISS) Coordinated with DISCOVER-AQ (DAQ) (EV-1)

Augmented by AMS, CPL, SSFR instruments on ER-2

- 10 flights
- 49 flight hours
- Observations include:
 - Bright (snow) and dark (ocean) targets
 - Aerosols over dark, bright, and urban areas (with DAQ correlative data)
 - Clouds Fog, Stratus, Stratocumulus, Cirrus

RSP

Winter 2013 ASCENDS DC-8 Airborne Campaign (19 February – 7 March 2013)

GSFC CO2 Lidar Sounder

Implementation

- Flight Test Candidate ASCENDS Instruments: LaRC/Exelis IM-CW CO₂ Lidar (MFLL); GSFC CO₂ Lidar Sounder; JPL CO₂ LAS; GSFC Broadband CO₂ Lidar (shown above installed on DC-8)
- Conduct Eight DC-8 Flight Tests from NASA Dryden Palmdale Base:
 - Engineering Flight; CA Central Valley Flights (day & night); RRV Flight
 - Three long-range flights over snow surfaces east of Rocky Mountains
 - Long-range flight over Pacific with sampling over CA/OR coastal forest

Objectives

- Advance testing of $CO_2 \& O_2$ measurements under day and night conditions.
- Assess CO₂ & O₂ measurements over Railroad Valley (RRV) with GOSAT overpass.
- Obtain reflectance and CO₂ & O₂ measurements over fresh and aged snow surfaces.
- Evaluate CO₂ & O₂ measurement performance in presence of thin cirrus clouds.
- Obtain reflectance data from ocean surface with high wind speeds (~10 m/s) and assess $CO_2 \& O_2$ performance over tall coastal forest conditions.
- Evaluate derivation of XCO₂ from combination of $CO_2 \& O_2$ measurements.

ATTREX Science Campaign #1 Vertical Profiles through the Tropical Tropopause Layer

The first science campaign for the EV-1 selected ATTREX investigation is occurring now with a NASA Global Hawk from DFRC.

- 5 science flights of >24 hours have occurred since 2/5/13 (1st was planned for 1/15)
- 1 more flight planned this campaign, with hard end date of 3/15 (including reserve).
- The next 2 campaigns are planned for January 2014 in Guam and July 2014 in either Australia or Okinawa.
- The Global Hawk is now performing altitude profiles numerous times each flight through air masses colder than the aircraft was test-rated. This required significant discussion with Northrup.
- This year's tropical tropopause is much colder than normal due to the same atmospheric transport processes that warmed this year's Arctic vortex.
- ATTREX measurements are showing the lowest atmospheric water vapor concentrations ever measured.
- This combined set of observations (12 instruments), along with MLS on Aura, should significantly improve our understanding of the control of stratospheric water vapor, cirrus formation, and atmospheric transport.

Summer 2011

Autumn 2011

Winter 2011/2012

Spring 2012

Summer 2012

Autumn 2012

Aquarius Monthly Project Status Report - February 12, 2013

Aquarius Version 2 Data was released 2/25 (available at PODAAC). This version is released for scientific analysis and fully documented for the oceanographic community.

The table below shows the advancement of this product over prior version (1.3). Further advancement toward Level 1 requirements is expected with Version 3 (later in 2013).

	Level 1 Science Mission Requirement	Baseline Mission	Minimum Mission
1	The Aquarius Mission shall collect the space-based measurements to retrieve Sea Surface Salinity (SSS) with		<u>V1.3:</u> 0.38
	global root-mean-square (rms) random errors and systematic biases no larger than 0.2 psu on 150 km by 150 km scales over the open ocean.	<u>V2.0</u> 0.30	<u>V2.0</u> 0.27
2	SSS Averaging Interval	1 Month	3 Months
3	Mission Duration	At least 3 Years	At least 1 Year
4	Deliver data products to a NASA Distributed Active Archive Center (DAAC). Level 1a Reconstructed Unprocessed Instrument Data Level 1b Calibrated Sensor Units Level 2 Derived Geolocated SSS Level 3 Time-space averaged SSS on a standard Earth Projection		Yes

Reinvigorate On-Orbit Constellation (1 of 2)

- OSTM/Jason-2
- OCO
- Glory
- Aquarius/SAC-D
- NPP
- LDCM

- Launched 6/2008 Launched 2/2009 (LV Failure) Launched 3/2011 (LV Failure) Launched 6/2011 Launched 11/2011 Launched 2/2013
- GPM On Schedule for 2/15/2014 Launch
 OCO-2 On Schedule for 7/1-7/2014 Launch
 SAGE-III/ISS On Schedule for 8-12/2014 Launch
 SMAP On Schedule for 10/31/2014 Launch

ESD Operating Missions (2013)

VENTURE-CLASS UPDATE/STATUS

Venture-Class is a Tier-I Decadal Survey recommendation

- Science-driven, PI-led, competitively selected, cost- and schedule-constrained, regularly solicited, orbital and suborbital
- Venture-class investigations complement the systematic missions identified in the Decadal Survey, and provide flexibility to accommodate scientific advances and new implementation approaches
- Venture-Class is fully funded, with 3 "strands"
 - EV-1: suborbital/airborne investigations (5 years duration)
 - Solicited in May FY09 (selections in FY10) and every 4 years
 - 5 investigations selected; flights began in FY11
 - EV-2: small complete missions, Class D (5 years development)
 - Solicited in FY11 and every 4 years
 - Small-sat or stand-alone payload for MoO; \$150M total development cost
 - AO released 17 June 2011, CYGNSS selected July 2012
 - EV-Instrument: spaceborne instruments for flight on MoO (5 years dev.)
 - Solicited in FY11 and every 18 months thereafter
 - AO release Feb 7; proposals received May 2012; **TEMPO selected Nov 2012**
 - ~\$90M development costs, accommodation costs budgeted separately

VENTURE-CLASS UPDATE/STATUS (cont)

• EV-1 (Airborne)

- All 5 investigations will have completed at least 1 sustained field campaign by early in CY2013
 - $_{\odot}$ All EV-1 investigations will fly during 2013
- Second "EV-3" ("EV-Suborbital") solicitation funded, in preparation for release on schedule in mid-2013

• EV-2 (Small-sat)

- CYGNSS PI team and NASA program office making good progress, should be under contract by late CY2012 (planned 2016-2017 launch)
- ESD/SMD developing detailed "Class D" management approaches and processes

EV-I (Instrument)

- TEMPO selected for GEO hosted payload opportunity (2017 launch)
- ESD initiating formal host selection/negotiation process
- Second "EV-Instrument2" solicitation funded, on schedule for release ~August, 2013

CYclone Global Navigation Satellite System Chris Ruf, PI (U. Michigan)

Primary Science Objectives

•Measure ocean surface wind speed in almost all precipitating conditions including those in the Tropical Cyclone eyewall •Measure ocean surface wind speed in the Tropical Cyclone inner core with sufficient frequency to resolve genesis and rapid intensification.

Partners	Southwest Research Institute: Primary Observatory development Surrey Satellite Technology, U.S.: Delay Doppler Mapping Instrument NASA Ames Research Center: Deployment Module
Risk	7120.5D Category 3; 8705.4 Payload Risk Class D
LRD	Target date February 2016
Orbit	35 deg inclination, 500 km altitude
Duration	2 year
Payload	Delay Doppler Mapping Instrument
LCC	\$151.7M (RY\$)

Earth Venture Instrument-1 Selection Tropospheric Emissions: Monitoring of Pollution

PI: Kelly Chance, Smithsonian Astrophysical Observatory

Instrument Development: Ball Aerospace

Project Management: LARC (Wendy Pennington, PM; Dave Flittner, PS)

Other Institutions: GSFC, NCAR, Harvard, NOAA, UC Berkeley, SLU, UAH, EPA, Nebraska **RY\$:** 93.2M

Orbit requirements: *Geostationary Orbit.* NASA plans to host instrument on a commercial Geostationary communication satellite.

Scientific and Programmatic Characteristics

- Tropospheric pollution observations from Geostationary Orbit using a UV and Visible Offner Grating spectrometer
 - Retrieve Ozone, NO₂, SO₂, aerosols, CH₂O, others.
- TEMPO will be simultaneous with, and complements, EU/GEMS Sentinel 4 and Korean GEO AQ observations, forming a global AQ constellation in GEO.
- Operational agencies like EPA and NOAA are part of the science team.
- TEMPO will be a pathfinder to using hosted commercial payloads from GEO

TEMPO Overview

TEMPO

Tropospheric Emissions: Monitoring of Pollution PLDr. Kelly Chances

TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit (GEO) of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality (AQ) and climate forcing in Greater North America (GNA).

SCIENCE OBJECTIVES

- Collect simultaneous high temporal and spatial resolution measurements of pollutants over GNA.
- Measure the key elements in tropospheric ozone chemiatry & aerosol cycles.
- Observe aerosols & gases for quantifying and tracking evolution of pollution.
- Integrate observations from TEMPO and other platforms into models to improve representation of processes.
- Serve as the North American geostationary component of an international constellation for air quality monitoring.
- Determine the diurnal instantaneous radiative forcings associated with pollutants and other climate agents on the continental scale

SCIENCE TEAM captures global expertise in air pollution science, UV-Visible measurements, and image navigation and registration.

Kelly Chance, (PT)	SAO	Xiong Liu: (DPI)	SAO		
James Cart	Carr Astro	Ranald Cohen	UC Berkeley		
David Edwards	NCAR	Jack Fishman	St. Louis U.		
David Fittmer	LaRC	Joly Hennun	UMBC		
Clartiel Jacob	Harvard	Scott Jane	GSFC		
Joanna Joiner	GSFC	Nickolay Krotkov	GSFC		
James Leituh	Ball	Randal Martin	SAO		
Doreen Nell	LaRC	Michael Newthurth	UAN		
R. Bradley Pierce	NDAA	Robert Spurr	RT Solutions		
Raid Sulteinan	SAD	James Szykman	EPA		
Orner Torres	GSFC	Jun Wang	U. Nebraska		

UNIQUE CAPABILITIES

Demonstrated space-based chemical suite sensitive to key elements of tropospheric air pollution chemistry Fourty disylight observations from geostationary orbit capture diurnal cycle of emissions & chemistry Order of magnitude improvement in spatial sampling to resolve gase at urban scales and improve emissions inventory. Multi-spectral observations are sensitive to ocone in the lower-most troposphere, reducing uncertainty in air quality predictions by 50%. Geostationary orbit allows multiple observations per day.

increasing the probability of viewing a clear sky scene

TEMPO maps hourly changes in North American air quality.

INVESTIGATION OVERVIEW

TEMPO is an innovative use of a well-proven technique, able to produce a ground-breaking dataset. It is led by PI Dr. Kelly Chance. SAO, who for over 30 years has been at the forefront of atmospheric composition and pollution remotes sensing. Dr Chance and the Science Team have extensive expertise in algorithm development for GOME-1 & 2. SCIAMACHY. OMI and OMPS. The PI is supported by the NASA Langley team, which brings project management and spose flight instrument development expertise (CALIPSO. CEREE, SAGE III) with emphasis on hosting science payloads on a variety of platforms. The TEMPO imaging grating spectrometer is designed and built by Bail (with heritage in building OMPS and SAGE III) to take advantage of a GED host speccenth. Image navigation and registration is led by Carr Astronautics (GOES-FI). Science data processing capitalizes on operational algorithms used with current LEO instruments TEMPO will survice at prime time to be the U.S. component of a global GEO constellation for polytom monitoring.

KEY INSTRUMENT CHARACTERISTICS

Regim	marita	Convert.				
Field of Report	GRIA	Mesono City to Canada lar sande & Atlantic to Pacific				
irroging Time 1 hr		1252 aget positions with 2.8 sec imagetion				
Fieldpint N/S	2.0 km	Native plast achieved by 44 pm				
Fostprint EW	A.S.ien	telescope effective focal length				
Spectral Harge	200-000	1,024 apartral charvels matched to 24 food plane				
Spectral Resultation	2.6 NO					
Spectral Sampling	0.2 Nm	Actioned by apelitorator design				

Heritage-based grating spectrometer efficiently achieves the requirements derived directly from the Science Traceability Matrix.

Species	3. fland	See.	BNR .	EOL. Margin
80,	305-345	1297	1820	40%
HJCO	327-354	467	2004	330%
NO	423-421	1233	1810	59%
CJHO,	433-457	1350	2931	73%
0, (IN)	303-345	1122	1635	48%
O ₁ (9%)	545-548	958	1254	31%
ACID	354, 388	1000	1506	60%

Substantial margins for predicted signal-to-noise ratios are the foundation for a low-risk program.

INSTRUMENT COMPLEMENT

TEMPO moves high heritage LEO hardware to GEO following a low-risk build philosophy. The high design maturity of the TEMPO spectrometer is leveraged from LEO-proven heritage from OMPS, SAGE III, and SBUV, as well as from GEO studies and risk reduction activities. This, coupled with substantial performance margins, results in a low-risk, compact configuration ideally matched to deliver a high value science product.

Regirements	TIMED						
	Current Beel Extinuity	Contragency	Nunimum Expected Value				
Mason (Hg)	- 10	17%	107.8				
Average Power (W)	81.8	22%	88.4				
Downtrex Rate (Mtsps)		8.95					
Volume (Lew x 10	1.00m x 1.07m x 0.06m						

The low resource requirements for TEMPO can be accommodated by any of the commercial GEO buses over GNA, ensuring flexibility to selection of a host platform.

SCHEDULE, with margin, enables U.S. participation in a global GEO constellation to monitor pollution.

Place 8 M Place C Press E

Proposed Total Mission Cost: RY Lifecycle Cost: \$93,216,782 FY14 Lifecycle Cost: \$90,000,000

. .

Earth Science Program/Budget Strategy

Maintain a **balanced program** that:

- advances Earth System Science
- delivers societal benefit through Applications Development
- provides essential global spaceborne measurements supporting science and operations
- develops and demonstrates technologies for next-generation measurements, and
- complements and is coordinated with activities of other agencies and international partners

Support Research, Applied Sciences, Technology Development, and E/PO programs Continue to fund operations and routine data products for all on-orbit NASA research missions Develop and launch remaining foundational missions: LDCM, GPM, OCO-2

Advance formulation and development of top-priority Decadal Survey and Continuity missions: SMAP (10/2014), ICESat-2 (9/2016), SAGE-III/ISS (8/2014) and GRACE-FO (2017) [OCO-3 (2017), PACE (2020), SWOT (2020), ASCENDS, CLARREO, ERM, studies of other missions]

Continue execution of the full Venture Class program

Continue working with NOAA and OSTP to address approaches for **providing sustained**, **long-term spaceborne measurements**.

Provide significant support to National Climate Assessment, USGCRP, and international (CEOS) coordination activities

Earth Science Budget – FY13 Request

Formulation & Development Mission Plans

GPM Feb 2014 w/ JAXA; Precip **H-IIA**

OCO-2 July 2014 Global CO₂ Delta II

SAGE III Late 2014 Ozone & Trace Gases Falcon-9

GRACE FO Aug 2017 w/Germany; Global Mass & Water Variation German-supplied LV

CYGNSS 2016-2017 Tropical Cyclone Generation, Air-sea Interaction in Extreme Conditions

ICESat-2 Jul 2016 Ice Dynamics Delta II

SMAP Oct 2014 w/CSA Soil Moist., Frz/Thaw Delta II

Reinvigorate On-Orbit Constellation (2 of 2)

- GRACE-FO
- ICESAT-2
- CYGNSS (EVM)
- OCO-3/ISS
- TEMPO (EVI)
- PACE
- SWOT

- Formulation for launch 8/2016
- Confirmed for launch 12/2016
- Formulation for launch late 2016
- Formulation for launch 2017
- Formulation for launch 2017
- Acquisition Strategy under evaluation, launch 2020
- Formulation for launch 2020

NASA Earth Science Planned Missions (2013-2023)

Earth Observations from the ISS: NASA/ESD Status and Plans

- On-orbit instruments funded by non-ESD sources, ESD funding for analysis
 - HICO (Hyperspectral Imager for the Coastal Ocean)
 - Launched September, 2009 on HTV; mounted on JEM-EF
 - ISERV (Digital Camera and Telescope)
 - Launched July, 2012 on HTV-3; mounted internally on WORF
- Planned instruments funded by NASA/HEOMD, ESD funding for analysis
 - CATS (Cloud-Aerosol Transport System for ISS)
 - o LIDAR, summer 2013, HTV, JEM-EF
 - Rapid-Scat (Ku-band scatterometer)
 - Launch early CY2014, Falcon/Dragon
 - Lightning Imaging Sensor (under consideration)
 - Hyperspectral Follow-on to HICO (under consideration)
- Approved instruments funded by ESD
 - SAGE-III (Stratospheric Aerosol and Gas Expt)
 - In Phase-C; 8/2014 Launch on Falcon/Dragon; ESA provides hexapod pointing p'form
 - OCO-3 (Orbiting Carbon Observatory-3 instrument only)
 - Phase-A November 2012; Launch Fall, 2017

International Space Station Earth Science Instruments

ESP-3

ELC-4

Columbus EF

ESD/SAGE III (2014)

External Logistics Carriers – ELC-1, ELC-2, ELC-3 External Stowage Platforms – ESP-3 Alpha Magnetic Spectrometer Columbus External Payload Facility Kibo External Payload Facility

ISS/RapidSCAT (2014)

ESD/OCO-3 (2017) ISS/CATS (2014) ISS/HICO (2009)

ELC-3

ELC-1

JEMEF

ISERV: The ISS / SERVIR Environmental Research and Visualization System

ISERV Pathfinder in WORF

@ 350 km alt.	Angular Spatial					
Resolution	1.65 arc sec 2.8m					
FOV	2.38° x 1.59° 14.5km x 9.8k					
Spectral	350nm to 800nm					

Applications

•Primary – Humanitarian Response/Disaster
 Analysis (assessment, ground operations support)
 •Secondary – Deforestation Survey, Space
 Archaeology, Agriculture Inventory

Current Status

Fit check and HFIT verification – 11Jan2012
Payload delivery to CMC @ JSC – 12Jan2012
Shipment to JAXA – 23Jan2012
Launch aboard HTV-3 – 21July 2012

•System operations initiation – February 2013

ISERV Pathfinder is a COTS-based, visible spectrum instrument designed to provide a low cost path to experience and expertise in data acquisition, and system design and implementation. Pathfinder is the first step in an envisioned suite of Earth observing instruments aboard ISS, culminating in a broad spectrum, multipurpose, externally mounted sensor system.

ISERV First Light Image

February 18, 2013: The Rio San Pablo in Veraguas, Panama, as it empties into the Golfo de Montijo

Image dimensions: ~15 km x 13 km. North is to upper right.

ISERV is in ISS WORF

ESD Programmatic Summary: 2007 - 2013

- 1/2007: Decadal Survey Released
 - Legacy missions under development: Jason-2/OSTM, OCO, Glory, Aquarius/SAC-D, NPP, LDCM, GPM (Core+LIO)
 - ~55%/45% split between Flight, non-Flight
 - ~1000 hours planned flight time for Airborne Science Program
 - No budgeted competitive flight program (no ESSP solicitations)
 - FY2007 ESD budget request ~1.45B (after \$55M for rescission)
- Decadal Survey Recommendations
 - Re-invigorate on-orbit constellation launch legacy missions
 - Preserve programmatic balance
 - Embark on 15 new missions in 3 tiers
 - Institute competitive flight program (Venture-Class)
 - Increase use of airborne science program
 - Increase ESD budget by 30-40% (to \$2B/year [FY07 \$\$] by 2010
 - Implement missions in a more cost-effective way, while preserving NASA core expertise

What ESD Did: 2007 – 2013

- 6 Legacy Missions Launched (4 successfully); 1 more to launch before 2/2014
 - OSTM: 6/20/08; OCO: 2/24/09; Glory: 3/4/11; Aquarius: 6/10/11;
 NPP: 10/28/11; LDCM: 2/11/2013
 - GPM: 2/15/14
- Climate Initiative developed: OCO-2 (7/14), SMAP (10/14), SAGE-III/ISS (late CY2014) to launch in 2014
- 7 additional missions funded for launch by 2020 (ICESAT-2, CYGNSS, *TEMPO*, GRACE-FO, OCO-3, *PACE*, SWOT)
- Airborne hours increased x 2.5, including ICEBridge, EVS
- Venture-Class funded, selected, next round on schedule (all 3 strands)
- Budget increased to ~\$1.8B/year

Launch Vehicle cost, availability

• Potential significant external budget perturbations from sequestration, FY14-18 budget submit, etc.

Performance shown below rounded down to nearest 50kg in the Small class and nearest 100 kg in the Medium and Intermediate classes. For detailed performance data see http://elvperf.ksc.nasa.gov		ANTARES	
--	--	---------	--

Vehicle Class	icle Class Small					Medium				Intermediate		
Launch Vehicle	Falcon 1	Pegasus XL	Athena Ic	Falcon 1e	Taurus XL	Athena llc	Antares 120/130	Delta II 7320/7920	Falcon 9 v1.0	Falcon 9 v1.1	Atlas V 401	Atlas V 551
Offeror	SpaceX	OSC	LMSSC	SpaceX	OSC	LMSSC	OSC	ULS	SpaceX	SpaceX	ULS	ULS
Perf @ 600 km Sun Synch	150kg	200kg	300kg	500kg	800kg	1100kg	1400/*2500kg	1500/2900kg	6400 kg	12200 kg	6600 kg	14200 kg
Perf @ C3 of 10	n/a	n/a	n/a	n/a	n/a	n/a	*600 / n/a	n/a	1300 kg	2600 kg	2400 kg	5000 kg
Certification Cat	n/a	Cat 3	n/a	n/a	Cat 2	n/a	n/a	Cat 3	n/a	n/a	Cat 3	Cat 3
Launch Sites	RTS	CCAFS WFF RTS VAFB	CCAFS KLC WFF	RTS	CCAFS WFF VAFB	CCAFS KLC	WFF	VAFB	CCAFS VAFB	CCAFS VAFB	CCAFS VAFB	CCAFS VAFB

*Antares 120 performance @ C3 of 10 is not available. Data shown is for Antares 122 performance @ C3 of 10 // Antares 130 performance to sun synch not available. Data shown is for Antares 131 performance to 600km sun synch. NOTE: Delta IV is not currently offered on NLS II

NLS II Launch Vehicles

For detailed performance data see http://elvperf.ksc.nasa.gov

NOTE: Delta IV and Antares are not currently offered on NLS II

Launch Vehicle	Falcon 1	Pegasus	Athena I	Falcon 1e	Taurus XL	Athena II	Delta II 7320	Falcon 9 Blk1	Falcon 9 Blk2	Atlas V 401
Offeror	SpaceX	OSC	LMSSC	SpaceX	OSC	LMSSC	ULS	SpaceX	SpaceX	ULS
Perf @ 600 km Sun Synch	175 kg	240 kg	320 kg	505 kg	950 kg	1175 kg	1700 kg	6490 kg	7540 kg	6640 kg
Certification Cat	n/a	Cat 3	n/a	n/a	Cat 2	n/a	Cat 3	n/a	n/a	Cat 3
Launch Sites	RTS	CCAFS WFF RTS VAFB	CCAFS KLC WFF	RTS	CCAFS WFF VAFB	CCAFS KLC WFF	VAFB	CCAFS RTS	CCAFS RTS	CCAFS VAFB

GPM Completed TVAC

The GPM Core Observatory was removed from the GSFC SES Chamber on January 27th

SMAP: Reflector Boom Assembly Mesh and Web

SAGE III: Hexapod Electronics Unit Status

Hexapod Mechanical Assembly (HMA) Hexapod Electronics Unit (HEU)

- All boards inspected and all boards need replacement or rework!
- Discussing recovery plans with ESA and ISS

Rework main board /remanufacture piggy back board

NASA Airborne Science Aircraft

LDCM Commissioning Events (planning dates)

Feb. 11-17	Complete
Feb. 16	Complete
Feb. 17	Complete
Feb. 17	Complete
Feb. 18	Complete
Feb. 20 - Mar. 3	In Progress
Feb. 24	Complete
Feb. 26	Complete
Mar. 4	
Mar. 5	
Mar. 6 - 12	
Mar. 6	
Mar. 8	
Mar. 10	
Mar. 14	
Mar. 16	
Mar. 19	
Mar. 27	
Mar. 28 - Apr. 1	
Apr. 3	
Apr. 9	
Apr. 12	
Apr. 26	
	Feb. 17 Feb. 17 Feb. 18 Feb. 20 - Mar. 3 Feb. 24 Feb. 26 Mar. 4 Mar. 5 Mar. 6 - 12 Mar. 6 Mar. 8 Mar. 10 Mar. 14 Mar. 12 Mar. 27 Mar. 28 - Apr. 1 Apr. 3 Apr. 9 Apr. 12

	NASA A	Airborne S	Scienc	e Pro	gram	ו 6-N	Ionth	Scł	nedu	lle s	starti	ng J	anuar	y 201	3 (ge	enera	ted 2	2/13/	2013)		
										F۲	13											
	Q2									Q3												
	Jan			Feb			Mar				Apr				Мау				Jun			
ASP Support	ASP Supported Aircraft																					
DC-8	DC-8 B-Chec	ck Mair	DC-8 I <mark>AS</mark>		ASCE	NDS F	ACCES	<mark>S - A</mark>					K-	Tec IRIS I	4				SEAC	<mark>4RS P</mark>	SARP	SEAC
ER-2 #806		EXRA	D Upload		AVIRI		A	AVIRI <mark>:</mark> A		/MAS	TER - I	HySPI	RI	LAC		<mark>AVIRI</mark>	AVIRI	S/Mast	ter Hys	pIRI		
ER-2 #809	PODEX Uplo	PODEX 1220)22 (AirMS	SPI, EXRA				Ľ	_MAT			<mark>SPI U</mark>	SPI Fligh [.]	ts	NPP	(eMAS	, NAST	T-I, NAS		LAC D		
G-III (D)	Holida <mark>Hawai</mark>	i GLIST Local	Maintena	nce			Central &	& Sout	th Am	erica		Califor	nia Fault I	Lines								
G-III (J)	992 Maintena	ance	AirMOSS	Engineer	AirMO	SS Mi	Decor D	irect R	{ecor	Frainin	g Fligl	AirMO	SS Mi Air	MOSS N	l <mark>i</mark> Decor	r Direct	Recor	AirMO	OSS Mi	AirMO)SS Mi <mark>/</mark>	AirMC
GHawk #871				UAVS	SAR/LVI	<mark>IS </mark>					UAVS	AR/LV	Download	I-UAVSA	F							
GHawk #872	ATTREX Upl	ATTREX Scie	ence Fligh	ts		<mark>ATTRI</mark>															Aircraft	. Modi
P-3	P-3 AI <mark>DISCO</mark>	DISCOVER-/	AQ Califor	nia <mark>DISC(</mark>	Post I	<mark>Operat</mark>	ion IceC	<mark>)pera</mark> O	Operati	ion Ice	Bridge	e			Annu	al Main	tenanc	e and I	Upgrade	es	la l	ECOS
		Stateside	e Deplo	oyment	t																	
		Flight																				
		Reimbur	sable																			
		Aircraft N	Nodific	ations																		
		Maintenance																				
1	Sou	Irce: ASP	websit	te cale	ndar	at htt	p://air	born	iesci	ience	e.nas	sa.gc	ov/aircr	aft_ov	ervie	w_ca	al					
·												-										

Space-based observations of megacity carbon dioxide

Eric A. Kort, Christian Frankenberg, Charles E. Miller, and Tom Oda, GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L17806, doi:10.1029/2012GL052738, 2012

NASA scientists demonstrated the potential of satellite-borne instruments to provide accurate global monitoring of megacity CO₂ emissions using GOSAT observations of column averaged CO_2 dry air mole fraction (X_{CO2}) collected over Los Angeles and Mumbai. By differencing observations over the megacity with those in nearby background, they observed robust, statistically significant X_{CO2} enhancements of 3.2 ±1.5 ppm for Los Angeles and 2.4 \pm 1.2 ppm for Mumbai, and found these enhancements can be exploited to track anthropogenic emission trends over time. They estimated that X_{CO2} changes as small as 0.7 ppm in Los Angeles, corresponding to a 22% change in emissions, could be detected with GOSAT at the 95% confidence level. Urban areas now house more than half the world's population, and are estimated to contribute over 70% of global energy-related CO₂ emissions. Many cities have emission reduction policies in place, but lack objective, observation- based methods for verifying their outcomes. The study used data from the Japan Aerospace Exploration Agency's Greenhouse gases Observing Satellite (GOSAT) and algorithms developed for NASA's Orbiting Carbon **Observatory-2 (OCO-2) mission. Future observations from** OCO-2 will enable significant improvements over GOSAT based on better measurement precision, 100x more observations and spatially-resolved urban CO₂ dome sampling along the OCO-2 flight track.

(Top) Nightlights map of the Los Angeles megacity and surroundings. Selected GOSAT observations within the basin (pink circles near 34N, 118W) and in the desert (red triangles near 35N, 117–118W). *(Bottom)* Time-series for basin and desert observations averaged in 10-day bins.

 3.2 ± 1.5 ppm in-city

ESD Orbital Flight Portfolio – 2012-2022

- LDCM (2/11/2013) "Landsat-8" including thermal IR, w/USGS
- GPM (2/2014) Global Precipitation mapping, w/JAXA
- OCO-2 (7/2014) Atmospheric CO2 monitoring, recovery mission
- SAGE-III/ISS (8/2014) Ozone, Temp, Humidity profiles, w/HEOMD, ESA
- SMAP (10/2014) Soil Moisture and Freeze/Thaw cycling, w/CSA (minor)
- ICESat-2 (late-2016) Precision Ice Topography, Ecosystem monitoring
- CYGNSS [EV-Mission/1] (late 2016)
- GRACE-FO (8/2017) Gravity/Ice Mass/Ground Water, w/GFZ & DLR
- OCO-3/ISS (Fall 2017) CO2 continuity, from ISS, OCO-2 spares
- TEMPO [EV-Instrument/1] (2017)
- SWOT (2020) Wide-swath ocean altimetry, land water, w/CNES
- PACE (2020) Ocean Color, possibly Aerosols
- EV-Instrument/2 Venture-Class (NLT 2020)
- L-band SAR (2021) Solid Earth, Cryosphere, Ecosystems, w/ISRO
- CLARREO (2022?) Precise global radiation balance, possibly w/UK
- EV-Mission/2 (NLT 2022)
- EV-Instrument/3 (NLT 2022)
- Significant studies ongoing for all other Tier-2 Decadal Survey missions