

The GRACE Mission After the First Decade

Byron Tapley University of Texas Center for Space Research

Frank Flechtner GFZ German Research Centre for Geosciences

Michael Watkins Jet Propulsion Laboratory, California Institute of Technology

Srinivas Bettadpur University of Texas Center for Space Research

CESAS Washington, DC October 23 - 25, 2013

1996 GRACE ESSP Proposal

".....GRACE will monitor the geoid variations for a 5-year period. By producing a new geoid every 12 to 24 days, GRACE will help unravel the complex processes affecting our climate by:

providing unprecedented measurement of large-scale evapotranspiration, soil moisture, and the hydrologic cycle, monitoring changes in the deep ocean currents, measuring the depletion of large aquifers, monitoring sea level rise and allowing ocean thermal expansion to be separated from increase in mass, and measuring changes in the mass distribution of polar ice."

.....GRACE's accurate geoid models will also allow determination of ocean circulation and enable new understanding of lower- *mantle viscosity* and the forces and trajectories of subducted slabs in the mantle..... observe the *gravity* change associated with large Earthquakes

SLR and Global Mass Variation

GRACE Satellites

GRACE Mission Status

Launched: March 17, 2002

Nominal Mission : 5 years Over 11.5 years in orbit (4238 days) 138 monthly repeats (10 monthly outages)

Initial Altitude: 500 km

Current Altitude: ~429 km (-35 m/d) Inclination: 89 deg Eccentricity: ~0.001 Separation Distance: ~220 km Currently ~208 km (1.54 km/day) Non-Repeat Ground Track, Earth Pointed, 3-Axis Stable

Mission Lifetime Issues

Altitude Decay: Even pessimistic (highdrag) estimates show lifetime until late-2016/early-2017

Propellant Use for Attitude Control is available Past 2019

Battery Capacity: This is unpredictable.

Single String Instrument Operations:

Degraded science mission options under study

Battery Issues

After April 11, 2011 no active thermal control Instrument shut down during each160 day beta prime cycle ~40 days lost during each cycle Requires more complicated data analysis to account for the

effects thermal variations.

After appropriate processing, there are no evident degradation in data quality

10/30/2013

German Space Operations

Weilheim GS

Grace Monthly Gravity Solution

$$U_{ns}(r,f,l,t) = \frac{m}{r} \mathop{\stackrel{+}{a}}_{n=2} \mathop{\stackrel{n}{m}}_{m=0} \mathop{\stackrel{+}{\otimes}}_{m=0} \mathop{\stackrel{n}{\leftrightarrow}}_{m} \mathop{\stackrel{n}{\otimes}}_{r} \mathop{\stackrel{n}{\otimes}}_{m} \frac{R_e}{r} \mathop{\stackrel{\circ}{\otimes}}_{r} \overline{P}_{nm}(sin f) (\overline{C}_{nm}(t) cos ml + \overline{S}_{nm}(t) sin ml)$$

Grace Mission Concept

GRACE MEASUREMENT CONCEPT

Sample the globe every 30 days

Convert 30 day data set into Gravity Model representative of mass distribution during each sample interval

- Six hour global output from ECMWF Meteorological Model to obtain rapid atmospheric mass transport
- Surface pressure and winds from ECMWF Models are used to force Ocean Model to obtain high frequency Ocean response to atmospheric forcing

Average ~ 125 monthly solutions(>11.5 year mission) used to obtain long term mean

Difference monthly solutions from the long term mean to obtain monthly mass variability

Over 11.5 Years in Orbit – 125 Global Gravity Solutions

Mission Science Objective

Measure Global Gravity to Determine Mean Global Mass Distribution and the Temporal Variations

•GRACE measures the change in all forms of the water stored on land after precipitation has been stored as snow,filtrated into the ground, evaporated, or left the basin as streamflow

• Water balance accounts for the deposition, outflow and storage change

Storage Change = Inflow (Precipitation) – Outflow (Evaporation + Streamflow)

Emerging Trends in Global Freshwater Storage

Trends in terrestrial water storage, including groundwater, soil water, lakes, snow, and ice, as observed by GRACE during 2002-09

GRACE observes changes in water storage caused by natural variability, climate change, and human activities such as groundwater pumping

GREENLAND ICE MASS LOSS FROM GRACE

Global Sea Level Change

GRACE Mass Estimate

Trends (mm/yr) Ocean = 1.2 ± 0.3 Land = 0.3 ± 0.5 Greenland = -0.60 ± 0.1 Antarctica = -0.40 ± 0.2 Famiglietti, 2009

GRACE/Jason/Argo Closure Grace Trend(2003-2009.5) = 1.3+/- 0.8 mm/yr Chambers and Willis, 2009

GRACE and Texas Reservoir Water Storage

Surface water reservoir storage is closely correlated with the GRACE data

TEXAS STATE TOTAL WATER STORAGE ANOMALIES

Comparison of Illinois Water Storage Anomalies

Area of 280,000 km²

(From Swenson, 2007)

GRACE Data Assimilation

GRACE water storage, mm January-December 2003 loop

From scales useful for water cycle and climate studies...

Model assimilated water storage, mm January-December 2003 loop

Monthly anomalies (deviations from the 2003 mean) of terrestrial water storage (sum of groundwater, soil moisture, snow, and surface water) as an equivalent layer of water. Updated from *Zaitchik, Rodell, and Reichle, J. Hydromet.,* 2008.

To scales needed for water resources and agricultural applications

GRACE Assimilated vs. in situ Groundwater

GRACE Data Assimilation for Drought Monitoring

GRACE terrestrial water storage anomalies (cm equivalent height of water) for June 2007.

New process integrates data from GRACE and other satellites to produce timely information on wetness conditions at all levels in the soil column, including groundwater. For current maps and more info, see http://www.drought.unl.edu/MonitoringTools.aspx

Drought indicators from GRACE data assimilation (wetness percentiles relative to the period 1948-present) for 26 June 2007.

GRACE in BAMS Annual State of the Climate Issue

A section on terrestrial water storage anomalies and groundwater, primarily based on GRACE observations, is now included in the *Bulletin of the American Meteorological Society* annual State of the Climate issue (Rodell et al., 2011; 2012).

Figure 1. Changes in annual-mean terrestrial water storage (the sum of groundwater, soil water, surface water, snow, and ice, as an equivalent height of water in cm) between 2009 and 2010, based on GRACE satellite observations.

Figure 2. Zonal mean terrestrial water storage anomalies in cm equivalent height of water (reference period 2003-2007).

Figure 3. Mean, global terrestrial water storage anomalies, excluding Greenland and Antarctica, in cm equivalent height of water.

GOCE has improved accuracy at intermediate wavelengths and reduce 'striations'

GOCE provides new information to improve accuracy at intermediate wavelengths and reduce geoid artifacts

GOCE contribution

Maps shows GOCE data residual relative to GIF48 where terrestrial gravity was poor/unavailable; and shows the striations from GRACE

Low residuals in XX direction (first column) show analogy between the GOCE gravity gradients and GRACE data in the along-track directions.

First Decade of Grace Gravity Measurements

The Mission Goals have been exceeded! Paradigm shifting Science Results 2000+ users @ JPL/PODAACC 1000+ reviewed publications

GRACE FO Objectives and Approach

Measuring Earth's Mass in Motion GRACE (Gravity Recovery and Climate Exper ii: http://www.csr.utexas.

- Primary Objective of the Follow-On Mission is to continue the GRACE Mission's 10-year record of key climate change observations based on high-resolution global models of Earth's gravity field and its variation over time.
- Secondary Objective is to demonstrate intersatellite laser ranging technology in support of future GRACE-like and other Agency missions.

Mission Approach

- Minimize risk and cost by maximizing use of heritage systems and partnerships from GRACE, including international partnership with Germany in science, ground systems, operations, and launch services.
- Deliver products to the science community through the existing channels developed and used for GRACE.

10/30/2013

Short Wavelength Geoid Residuals GIF48

This tests shorter wavelengths (higher degrees) and reveals artifacts ('striations') at wavelengths where GRACE and surface information overlap

The residuals are the difference between a 'high-frequency DOT' defined as (GSFCMSS00 – geoid) and the same DOT smoothed to ~900 km

Progress in Mean Gravity Field Models

Degree

GPS Atmospheric Occultation

