

NASA Earth Science Division Status and Decadal Survey Thoughts Michael H. Freilich

March 4, 2014

Earth Science Program Overall Strategy

Maintain a **balanced program** that:

- advances Earth System Science
- delivers societal benefit through applications development and capacity building
- provides essential global spaceborne measurements supporting science and "operations"
- develops and demonstrates technologies for next-generation measurements, and
- complements and is coordinated with activities of other agencies and international partners

NASA's Earth Science Division

Applied Sciences

A REAL PROPERTY AND INCOME.

Technology

Non-Flight Budgets: 2007-2013

On-Orbit Flight Missions – Partnerships

Missions in Formulation & Development

OCO-2 July 2014 Global CO₂

SMAP Nov 2014 w/CSA Soil Moist., Frz/Thaw

On the ISS

GPM Feb 2014 w/JAXA **Global Precipitation**

SWOT 2020 w/CNES; Sea surface & Fresh water height, 94th AMS Meeting, 5 February 2014, Atlanta, GA

ICESat-2 2017 Ice Dynamics, ecosystem structure

GRACE FO Aug 2017 w/GFZ; Global Mass & Water Variation

RapidSCAT, Jul 2014 Wind Scatterometry CATS, Fall 2014 Aerosols SAGE III, Aug 2015 **Ozone & Trace Gases** LIS, 2016 Lightning Mapper

CYGNSS Oct 2016 Cyclone Evolution, Air-Sea Interactions in Extreme Storms 6

International Space Station

ELC-2 AMS

ESP-3

ELC-4

Columbus EF

SAGE III (2014)

External Logistics Carriers – ELC-1, ELC-2, ELC-3 External Stowage Platforms – ESP-3 Alpha Magnetic Spectrometer Columbus External Payload Facility Kibo External Payload Facility

RapidSCAT (2014)

SFRV

CATS (2014) HICO (2009) OCO-3 (2017)

ELC-3

ELC-1

JEMEF

LIS (2016)

Earth Science Budget: FY14 Request/Appropriation

Realities

- Decadal Survey recommendations will not be the definitive word on the ESD program scope
 - Earth observation from space is important, thus Administration, Congress have specific equities
 - ESD will be directed to implement sustained measurements in support of NOAA, USGS – ambiguity regarding requirements/capabilities/risks
- ESD budget will not increase substantially, and may decrease
- Mission costs, schedules, can *only* be pre-defined/controlled in competitively selected, cost/schedule-constrained, programs (e.g., Venture-Class) – not in directed, systematic, missions
 - Directed missions to NASA Centers are essential to the Agency
- Venture-Class is now an integral part of ESD culture
- Named-mission backlog from 1st Decadal Survey is substantial

Useful Inputs from Decadal Survey

- Recommend the target budgetary balance between Flight, Non-Flight
- In the Non-Flight portion of the program, recommend the target balance between R&A, Applied Science, and Technology elements
- In the Flight portion of the program, recommend the target budgetary balance between systematic/directed, and cost/schedule-constrained competed, mission programs

o Is there a maximum acceptable mission cost ("Flagships")?

 $_{\odot}$ Should ESD spin up other Venture-like programs, with different caps?

- Flight mission architecture/approach recommendations

 Engineering investments in common s/c? "Small-sats/constellations"?
- Provide decision principles for balancing new measurements and time series extensions of existing data sets
 - ESD budget will **NOT** increase
 - Other agencies will NOT transition measurements from ESD
 - How to account for international missions/programs, some long-term?
- Revisit priorities of named missions from 1st Decadal Survey
- Change scope(s) of R&A, Applied Sciences, Technology programs?¹¹

Venture-Class

- Science-driven, PI-led, competitively selected, cost- and scheduleconstrained, regularly solicited – Venture-Class is a *high-priority Decadal Survey Recommendation*
- Complement the systematic missions, provide flexibility to accommodate scientific advances and new implementation approaches
- All ongoing and planned investigations, solicitations, and selections are on track and fully funded

Suborbital

Small-sat/Missions

Instruments

Earth Venture Mission-1 Selection CYGNSS (CYclone Global Navigation Satellite System)

- CYGNSS is a pathfinder to using small satellite constellations
- 8 microsatellite (18 kg each) dense sampling constellation
- GPS reflectometry to measure ocean surface winds in hurricane eyewalls and core in all precipitating conditions
- To improve understanding of hurricane development and intensity at landfall

PI: Chris Ruf, University of Michigan Instrument Development: Surrey Satellite Technology US Spacecraft: SwRI Project Management: SwRI Orbit requirements: Low Earth Orbit 35° inclination, 500 km altitude

Earth Venture Instrument-1 Selection Tropospheric Emissions: Monitoring of Pollution

- TEMPO is a pathfinder to using hosted commercial payloads from GEO
- Tropospheric pollution observations from Geostationary Orbit
 - Ozone, NO₂, SO₂, aerosols, CH₂O, others.
- Forms a global Air Quality constellation in GEO with EU/GEMS Sentinel 4 and Korean GEO observations.
- EPA and NOAA researchers are part of the science team.

PI: Kelly Chance, Smithsonian Astrophysical Observatory Instrument Development: Ball Aerospace Project Management: LaRC Orbit requirements: Geostationary Orbit. Hosted on a commercial communication satellite

NASA/ESD Applied Sciences Program

• Applications

 Enables identification of applications early in satellite mission lifecycle and facilitates effective ways to integrate end-user needs into satellite mission planning and throughout the mission lifecycle

• Capacity Building

 Builds U.S. and developing countries' capacity, including human, scientific, technological, institutional, and resource capabilities, to enhance the ability to make decisions informed by Earth science data and models

NASA/ESD Applied Sciences Program

Applications Themes

Oceans

Health

Water Disasters

Ecosystems

Agriculture Clir

Climate

Energy

Weather

nteractive Web GIS: Web Fire Mapp rs and Agus GFIMS **Global Fire Information** Management System lert Services: Fire Email Added EOS Data Services nerations System Image Subsets de Fire Data MODIS anid Reservesse Active Fire Product Burned Area Product

USDA/NOAA managed weekly U.S. Drought Monitor now using NASA GRACE data as part of analysis in creation of national and state-level maps..

United Nation's system now using data from NASA's Terra and Aqua satellites to identify fires and send alerts to remote areas via SMS and text messages.

Earth Science Technology Office (ESTO) Opportunities

The Earth Science Technology Office is a targeted, science-driven, competed, and actively managed technology program. The investment elements include:

Instrument Incubator Program (IIP) robust new instruments and measurement techniques 17 new projects added in FY14 (total funding approximately \$71M over 3 years)

Advanced Component Technologies (ACT)

development of critical components and subsystems for instruments and platforms 15 new projects added in FY11 (total funding approximately \$16M over 3 years)

Advanced Information Systems Technology (AIST) innovative on-orbit and ground capabilities for communication, processing, and management of remotely sensed data and the efficient generation of data products 18 new projects added in FY12 (total funding approximately \$23M over 3-4 years)

In-Space Validation of Earth Science Technologies (InVEST) on-orbit technology validation and risk reduction for small instruments and instrument systems that could not otherwise be fully tested on the ground or airborne systems *First 4 projects added in FY13 (total funding ~\$13M over 3 years)*

The current portfolio of active investments supports all of the 2007 NRC Decadal Survey mission concepts. 65% directly support Tier 1 and 2 missions, ~ 15% support Tier 3 missions, and the remainder are crosscutting. 94th AMS Meeting, 5 February 2014, Atlanta, GA

NASA Earth Science

Formulation