

A Climate Perspective on Data Continuity

Presented to the Committee on a Framework for Analyzing the Needs for Continuity of NASA-Sustained Remote Sensing Observations of the Earth from Space

Thomas R. Karl, L.H.D.

Director, NOAA's National Climatic Data Center

Chair, U.S. Subcommittee on Global Change Research

Michael Tanner

Dep. Director, NOAA's National Climatic Data Center

Jeff Privette

Chief, Climate Services and Monitoring Division, NCDC

November 12, 2013

Continuity

- **Different meanings for the climate and weather communities**
 - Weather: data flow without a gap
 - Climate: data flow without a gap plus overlapping data to evaluate and correct any temporal biases introduced by new system, (e.g., CERES, MODIS, VIIRS, Ozone)
 - Requires either
 - Overlap between old and new observing systems
 - Or overlapping independent measurements of the same quantity with equal or better quality
 - Or simultaneous highly correlated measurements
 - **With a well-coordinated verification and validation period**

Identify Methodologies

- **Objective methods to evaluate and correct temporal biases should include signal to noise experiments**
 - Identify requirements for detecting a time rate of change (e.g., a particular signal or trend) of a given magnitude
 - Make use of past data to quantify higher frequency variability
 - Develop probabilities of detecting biases of various overlapping time periods using seeded biases of known form and magnitude, e.g., Monte Carlo simulations
 - If available, use independent measurements in the analysis (e.g., a multivariate simulation) to reduce the time of overlap needed to minimize undetected biases and/or reduce overlap time.

Which measurements should be continued?

- **Priority**
 - Continue measurements that are best measured from space
 - E.g., very few reliable methods to measure top of the atmosphere irradiance
 - Lower priority given to measurements that can be obtained by other means
 - E.g., various ways to derived tropospheric temperature
 - Consideration given to measurements that are obtained from a single instrument (reduces risk)
- **Other Considerations**
 - Length, quality, and metadata for existing climate records

Value judgment with respecting to weighting

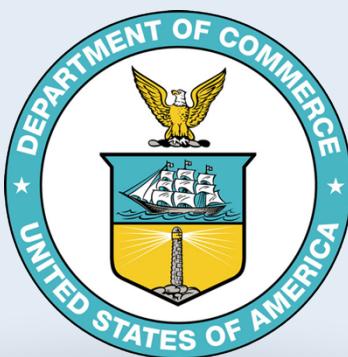
What gaps are acceptable?

- **Less egregious when**
 - Other observing systems are measuring physically linked quantities which can drive models (or algorithms) proven to accurately estimate the missing variable
 - E.g., Sea level and tide gauges, SSTs (numerous observing systems)
 - Records are of short duration
 - E.g., single-mission or experimental.

Prioritize relative importance of measurements

$$\text{Importance} = f(I, L, C, V)$$

I = irreproducibility


L = length of record

C = Cost of measurements

**V = value of measurement to society
(a judgment call)**

Questions?

