THE POTENTIAL ROLE OF SMALL SATELLITES, CUBESATS, CONSTELLATIONS, AND HOSTED PAYLOADS IN DESIGNING THE FUTURE EARTH OBSERVING SYSTEM ARCHITECTURE

COMMITTEE ON EARTH SCIENCE AND APPLICATIONS FROM SPACE (CESAS) September 17-19, 2014 NAS Building, 2101 Constitution Ave NW, Washington, DC

Perspectives on SmallSats and CubeSats

Thomas Sparn Dr. Peter Pilewskie

THURSDAY, SEPTEMBER 18th

ASP Open Data

Sparn/Pilewskie

Designing the Future Earth Observing System Architecture Agenda

- 10:45 Discussion with Bryant Cramer, former Associate Director of the USGS and former NASA ESD Deputy Director (tentative)
- 11:30 Discussion with Walter Scott, Digital Globe and Committee
- 12:15 Lunch
- 1:15 Earth Science with Hosted Payloads and Small Sat Constellations Lars Dyrud, Draper Laboratory
- 2:00 Discussion with Bill Swartz, PI RAVAN, Johns Hopkins Applied Physics Laboratory
- 2:45 Break
- Perspectives on SmallSats and CubeSats Tom Sparn and Peter Pilewskie University of Colorado/Laboratory for Atmospheric & Space Physics (LASP)
 Discussion with John Scherrer, Project Manager for CYGNSS,
- 4:00 Southwest Research Institute
- 4:45 Roundtable Discussions: Committee and Guests
- 5:30 Adjourn for the Day

Perspectives on SmallSats and CubeSats Outline

- 1. Current State of Small Satellite Technology
- 2. Examples of SmallSat/CubeSat implementations
- Disaggregation of LEO Earth Observing Systems (EOS) using SmallSat Capability
- 4. Science impacts and implication of using SmallSats on EOS
- 5. Risk Assessment for EOS using SmallSats and CubeSats
- 6. Issues with proliferation of small spacecraft

Tipping Point for Successful Design of Disagrigated Critical LEO Earth Observing Space Systems

Current State of Small Satellite Technology Small Satellite Class Definitions

ce ns		Satellite Class	Mass Range					
ce yii ns								
ien d fl ster		Small satellite	100 and 500 kg (220 and 1,100 lb),					
er In ys	.							
exper ng an te Sys	Sar	Micro satellite	10 and 100 kg (22 and 220 lb)					
e in ite	► e							
SP iild telli	CubeSat"	Nano satellite	1 and 10 kg (2.2 and 22.0 lb).					
A% 3u at	Ū,							
In H S		Pico satellite	0.1 and 1 kg (0.22 and 2.20 lb),					
		Femto satellite	10 and 100 g (0.35 and 3.53 oz)					

- Many Nano-satellites are based on the "CubeSat" standard
 - Consists of any number of 10 cm x 10 cm x 10 cm units
 - Each unit, or "U", usually has a volume of exactly one liter
 - Each "U" has a mass close to 1 kg and not to exceed 1.33 kg
 - (e.g. a 3U CubeSat has mass between 3 and 4 kg)
- Micro-satellites, such as the LASP Micro Bus (LMB), are larger and more capable but often share common avionic components with Nano-satellites

We are in the "Age of "U

THURSDAY, SEPTEMBER 18th

Projection Estimates for Small Satellites

- 2013 Projection estimated:
 - 93 nano/microsatellites would launch globally in 2013;
 - 92 nano/microsatellites actually launched
 - An increase of 269% over 2012
 - 2014 Projection: A significant increase in the quantity of future nano/microsatellites needing a launch.
 - 260 nano/microsatellites
 - ✤ An increase of 300% over 2013
 - ➤ 2015 2016 Projection:
 - Currently 650 future nano/microsatellites (1 50 kg)
 Currently 48 future (2014+) picosatellites (< 1 kg)
 - An increase of 134% over 2014 (reaching maximum capacity of launch availability)

Acknowledgment:

Many statistics and data are provided by the SpaceWorks Enterprises, Inc. (SEI) Satellite Launch Demand Database (LDDB) • The LDDB is an extensive database of all known historical (2000 – 2013) and future (2014+) satellite projects with masses between 0 kg and 10,000+ kg

HURSDAY, SEPTEMBER 18th

Characteristics of SmallSat's

Small Satellites

Micro Satellites

\$20M-\$80M **Robust Propulsion** Redundancy available Very Accurate Pointing Substantial Launch Vehicle High Data Capability

Very Large Apertures

\$3M-\$18M **Limited Propulsion** Selective Redundancy Accurate Pointing Shared Ride or Small Launch Vehicle High Data Rate Large Apertures

Cube/Nano Satellites \$100K-\$2M Very limited Propulsion Single String Good Pointing Shared Ride in many readily available P-POD Low Data Rate **Small Apertures**

HURSDAY, SEPTEMBER 18th

LASP Open Data

Sparn/Pilewskie 7

Nano Satellite/CubeSat Applications and Associated Examples

Scientific Research Phonesat 1.0 Mass: 1 kg Launched: 4/2013

Technology SwampSat Mass: 1.2 kg Launched: 11/2013

Education ArduSat Mass: 1 kg Launched: 8/2013

Weather Monitoring CSSWE Mass: 5 kg Launched: 09/2012

Earth Observation Dove 2 Mass: 5.5 kg Launched: 4/2013

Astronomy BRITE-PL Mass: 7 kg Launched: 11/2013

THURSDAY, SEPTEMBER 18th

LASP Open Data

Sparn/Pilewskie 9

Examples of Concepts to expand the capabilities of Cubesat Nano/Microsatellites

- 1. Tension / Compression Members
- 2. 8 element carpenter tape deployment
- 3. Long Tension / Compression Members
- 4. Precision Rails (miniature linear bearings and guides)
- 5. Modified Carpenter Tape Hinge Deployment

TEMBER 18th

3

2

Δ

Microsatellite Applications and Associated Examples

Micro Satellites Capabilities and Cost

- Earth Climate Hyperspectral Observatory
- Implemented on a Microbus
 - Continuous global 100m hyperspectral imaging (5Tbytes/day)
 - Low cost launch <\$15M
 - Low cost capable bus \$5.5M
 - Extremely capable instrument \$23M

CICERO

- Implemented on a Microbus
- Continuous global radio occultation observations
- Low cost ESPA launch <\$5M
- Low cost capable bus \$5.5M
- Extremely capable instrument \$7M

Instrument Costs Exceed Bus and Launch costs

Risk Assessment for EOS using SmallSats and CubeSats

- For current Earth Observing systems, the chief risks are most often not technical they are programmatic
 - Financial risk due to large systems costs and continuity of funding issues
 - Continuity risks due to schedule drivers of complex systems integration
- Disaggregation reduces single year cost impacts and growth
- System risk due to catastrophic failure is reduced by overlapping "constellation" of measurements
- Continuity risk reduced by having overlapping space systems

Mission Constellation Estimated Reliability

- Mission estimated reliability at four years is 0.78, dropping to 0.74 at year 5.
- The design goal of maintaining the mission reliability above 0.70 is achieved with a good margin.

Implementation Cost Profile

Total and Spectral Solar Irradiance 25 year Acquisition Through TOMC Implementation

TOMC = (TSSI Operational Monitoring Constellation)

- Earliest launch possible in 2018 if funding starts in FY 2015.
- Funding higher in first 3 years to establish hardware programs.
- Production of instruments, spacecraft and launch vehicle sustained over program.
- 25 years of CDR data production and archiving and operations.

TOMC Implementation Plan

TOMC PHASING	2014	201	5 2016	2017		2019	2020	2021		2023	2024				2028	2029		2031	2032	2033		203	5 203	6 2037	2038	2039	2040
					Launch				Launch				Launch				Launch				Launch						
					томо																						
					1-LRE	כ	2-LRE)	томо	-2																	
											3-LRI	2	томо			_											
															4-LRI	D	том	5-4		_	TON	<u> </u>					
																		1	5-LR	D	том	C-5			1 1		
ТОМС-1																											
TSIS Inst.	1/1				12/3	1																					
S/C (LMB)	1/1				12/3																-40	rony	me.				
Super Strypi Missile	1/1					' 1 (LRD															-AC	Olly	1113-				
Operations	1/1			ORR	5/		<i>י</i>)			10/2	4								PDF	R - Pre	limina	ry Des	sign Re	eview			
Climate Data Record	_			ORR						12/3										R - Crit							
	1/1					10/0	. /			12/3										R - Pre							
NASA Oversight	1/1	PDR	CDB	PER	PSB	12/3	'./,		\⊨										PSF	R - Pre	-Ship	Revie	w				
						100			- 1										ORF	R - Ope	eratior	nal Re	adines	s Revi	ew		
TOMC-2 TSIS Inst.	1/1						10/0	-											LRD) - Lau	nch R	eadin	ess Da	ate			
	1/1						12/3 12/3													₹ - Lau							
S/C (LMB)	1/1						12/3	LRR												R - Pre			ring Re	eview			
Super Strypi Missile	-			1/1				ORR	5/1	I (LRE)			10/0					PR ·	- Parts	Revie	ew					
Operations	_				1/1			-																			
Climate Data Record	1						10/0	1/1		4.0.10				12/3	1												
NASA Oversight	1/1	PR	PMR		PER	PSP	12/3	1 1/1		12/3													_				
	-																										
TOMC-3	_																					_	_	_			
TSIS Inst.					1/1						12/3		_														
S/C (LMB)	_		_		1/1 <				_		12/3											_	_	_			
Super Strypi Missile								1/1				· · · ·	5/	1 (LRD))												
Operations			_						1/1			ORR						12/3				_	_	_			
Climate Data Record											10/0	1/1		10/0				12/3	1								
NASA Oversight	_				1/1 <	PR P	MR		PER	PSR	12/3	11/1 <		12/3													
ТОМС-4																											
TSIS Inst.									1/1						12/3	31											
S/C (LMB)									1/1						12/3												
Super Strypi Missile												1/1				LRR	5/	1 (LRC	(כ								
Operations													1/1			ORR		、	,			12/	31				
Climate Data Record														I		1/1						12/	_				
NASA Oversight									1/1		.		-		12/3	31 1/1		12/3	1								
										PR F	MR		PER	PSR			Ĭ										
ГОМС-5																											
TSIS Inst.													1/1 <						12/3	31							
S/C (LMB)													1/1 <						12/3								
Super Strypi Missile														T I		1/1					5/	1 (LB	(D)				
Operations																	1/1			ORR			-,				12/
Climate Data Record																		T		1/1 <	<u> </u>						12/
NASA Oversight													1/1 <								Ţ						12/
	1													PR P	MB		PER	PSR				1					

Why Take a risk?

- The TSIS instruments represent a substantial investment in design, calibration and implementation. (\$49M)
- Copy costs for existing instruments are much lower and calibration facilities are developed and in-place. (\$5.5M/TIM 6.5M/SIM copy cost)
- Larger expenditure does not guarantee successful launch.
 - Challenger loss (Sparten Halley)
 - Glory loss (Glory/TIM instrument)

Solar Irradiance Climate Data Record (CDR) Availability Risk (TOMC Provides 22+ years CDR)

- A constellation of multiple overlapping space missions provide a reliable operational system to monitor data.
- Funding risk is reduced because of low yearly expenditure.
- A large number of potential de-scopes provide planned flexibility for the future.

High Reliability Low Cost Access to Space

Low Cost Rocket Design Super Strypi

- Super Strypi heritage from Sounding Rockets and Missile defense systems
- Three-stage solid propellant motor stack.
- Fin & spin stabilized vehicle, with attitude control system.
- Optimized motor design: exceeds payload objectives.
- Maximize performance & minimize cost by simplifying design & manufacturing process.
- Meet quick response launch requirement.

Evolved Expendable Launch Vehicle Secondary Payload Adapter, or ESPA ring.

ESPA allows up to six secondary satellites, up to 400 pounds each, to "share a ride to space" on Delta IV or Atlas V launch vehicles while carrying a large primary satellite.

THURSDAY, SEPTEMBER 18th

LASP Open Data

 The TOMC implementation is less than half the cost of large missions, with a system level reliability as implemented (through a constellation of small low-cost spacecraft) higher than large missions.

Issues With Proliferation of Small Spacecraft

- 1. Each spacecraft requires a uplink/downlink frequency allocation
- 2. Each spacecraft becomes "orbit debris" and occupies a potential orbital slot
- Capability limited based on the laws of physics and there is a general "push" to reduce requirements
- 4. There will be more "failures" due to the implementation cost/risk choice. Although the system reliability will remain the same or better than large mission approach