

RAVAN: Meeting Earth science objectives with less

September 18, 2014

PI: <u>William H. Swartz (JHU/Applied Physics Lab)</u> <u>bill.swartz@jhuapl.edu</u>, 240-228-8462 Lars P. Dyrud (Draper Laboratory) Warren J. Wiscombe, Dong L. Wu (NASA/GSFC) Steven R. Lorentz, Allan W. Smith (L-1 Standards and Technology) Stergios J. Papadakis, David M. Deglau, Philip M. Huang (JHU/APL)

RAVAN is an example of a new approach to Earth science observations

- Traditionally Earth space observations are made with large, exquisite, expensive measurement platforms
- But, such point observations are limited in time and space
 - > Often fixed local time
 - Sometimes with very long revisit times
- Space constellations provide much greater observational potential
- How can one reduce cost to make a constellation affordable?
 - Make measurements that are "good enough" (are the most exquisite measurements really necessary?)
 - > Use new ways to get to space (e.g., smallsats, hosted payloads)

Moving to a new "S curve" provides opportunities for better (science) return on investment

APL

Argo network makes global ocean observations 24/7

Argo constellation in space would provide for a major advance in Earth radiation budget measurement

- When the Argo ocean buoy array was introduced in 2004, producing a much better sampling of the upper ocean, it fundamentally changed our view of ocean heat content.
- The same thing is now needed in space.
- A constellation can provide unprecedented sampling of the Earth radiation budget (ERB).

Future climate change driven by Earth radiation imbalance (ERI)

SW

TSI/4≈

341 W/m²

TOR≈

341 W/m²

NRC Committee on Earth Science and Applications from Space (CESAS) • September 18, 2014

ERI is the single most important number for predicting the course of climate change over the next century

- If ERI is negative, global warming will permanently slow down and eventually reverse. (Geo-engineering goal: make ERI negative.)
- If ERI is zero, global warming will coast up to a value determined by "warming in pipeline" (the ocean) – likely 2°C or less above pre-industrial.
- If ERI is 2 W/m², global warming will certainly accelerate since this dumps a huge amount of extra heat into the Earth system.

Want to measure TOR to "climate sensitivity"

[Trenberth et al., 2009]

Outgoing radiation field has significant temporal and spatial variability

TOA outgoing SW

NRC Committee on Earth Science and Applications from Space (CESAS) • September 18, 2014

APL

A constellation could provide global sampling throughout the day

For a 66-sat constellation, number of samples in each 250-km ISCCP pixel in 1 hr (5-s sampling).

APl

An ERB constellation would quantify ERI <u>and</u> elucidate processes and forcings

- Accurate, un-tuned measurements of TOR
- Global, simultaneous, 24/7 coverage
- Diurnal sampling of rapidly varying phenomena
 - Clouds (really important!)
 - > Plants (plankton to trees)
 - > Ozone and other photochemistry
 - > Aerosols

The maturation of smallsat/hosted payload and constellation technology provides a unique opportunity for making the next great leap in ERB.

It would take a constellation of 30–40 sensors

number of satellites

number of satellites

(Example based on Iridium NEXT constellation)

What are some other benefits of a constellation?

- Expanded range of uses for ERB—e.g., making it a synoptic variable to be assimilated in weather and climate models
- ERB once again a dynamic research area with lots of nonincremental unsolved problems
- Eliminate single-point-of-failure threat
- Economies of scale
- Continuous improvement
- No gaps due to satellite replacement

But we have to start with one....

RAVAN demonstrates key technologies

- RAVAN: Radiometer Assessment using Vertically Aligned Nanotubes
- CubeSat mission funded through NASA ESTO's InVEST program
- Combines
 - Compact, low-cost radiometer that is absolutely accurate to NISTtraceable standards (L-1)
- VACNT absorber (APL)
 Heritage 3U CubeSat bus (APL)
 Process engineering analysis (Draper)
 Launch possible in early 2016
 Stepping stone toward ERB constellation

RAVAN payload development well underway

Primary mission objectives focus on technology

- TECH 1: Demonstrate the use of a <u>vertically aligned carbon</u> <u>nanotube</u> (VACNT) absorber within a radiometer for highaccuracy on-orbit measurements
- TECH 2: Demonstrate the use of a <u>gallium closed cell source</u> for calibration of absolute radiometry (for transfer to orbit of ground calibration)
- CAP 1: Provide <u>better than 0.3 W/m² (climate accuracy)</u> absolute Earth total outgoing radiation (TOR) measurements
- CAP 2: Establish an <u>accuracy standard that remains stable</u> over time on orbit (5-month prime mission*)
- CAP 3: Provide radiometer units that are manufacturable and calibratable at <u>low cost so that the required constellation</u> <u>remains affordable</u>

*Desirement: >1 year operation desired (allows for more TOR data for comparison with CERES and other instruments)

VACNTs are a key technology, grown at APL

- Chemical vapor deposition on silicon wafer; post-growth modification
- Pre-screen library at APL for IR reflectivity to 16 µm
- Characterization (likely at NIST) to 100 µm
- 3-axis vibe testing was performed on samples
- Overall the samples showed no gross change or irregularity that indicates they would be damaged past use by the launch (i.e., <u>VACNTs passed vibe test</u>)

RAVAN payload comprises both new and old tech

Payload EM unit nearing completion

Housing mock-up shown here, partially populated.

APL

Design concept: New vs. old tech

- Treat TOR as simple irradiance measurement
 - > Thermal detectors with spectrally flat black absorber and precision aperture
- Redundant Total and SW channels
- Shortwave filter is a sapphire dome
- Primary Radiometers: VACNT on Si
 - > Compact radiometer with better sensitivity for a given time constant
 - > Characterization much more involved
 - > Great, but not perfect absorber (>99%)
- Secondary Radiometers: Cavity ("old" tech)
 - Black painted conical Cu cavity
 - Better than 99.95% absorbing
 - Less subject to contamination
 - Simpler characterization and calibration
 - > Degradation monitor for primary radiometers
 - > Proves performance of primary
 - > Risk mitigation
 - > Provides redundancy

Getting to climate accuracy

Ga black body emitter

- > Transfer standard for Total channels
- Degradation monitor of both primary and secondary Total channels
- Ga BB coupled with solar and space looks gives offset and degradation monitoring
- Adequate resolution and absolute scale to determine outgoing radiation to 0.3 W/m²
 - Radiometric design must be adequate to achieve this (thermal, scattered light, polarization, aperture definition, electrical scale)
- Modes of operation/calibration
 - > Nadir-primary radiometers
 - Internal calibration (doors closed; Ga BB)
 - Solar calibration
 - > Space calibration
 - > Inter-calibration (primary and secondary radiometers)

Mechanical design for a very small form factor

- Payload volume is small (<1 U) but must contain:</p>
 - > 4 radiometers: Primary (VANCT) Shortwave and Total channels plus a secondary (cavity) pair of detectors
 - > 2 motorized covers with integrated gallium reference sources for Total channel stability monitoring
 - Star tracker and fine (0.1°) sun sensor
 - Control Electronics
- Reusable doors must open to clear radiometer 135° FOV and passively lock tightly for launch
- Radiometers actively temperature controlled and thermally isolated from spacecraft

RAVAN leverages APL's 3U CubeSat experience

- Two APL 3U CubeSats launched Nov. 19, 2013 from Wallops
- Radiometer payload is accommodated in current payload volume (<10×10×10 cm³)
- Sensor is nadir-pointing (most of the time)
- GPS navigation
- <1° pointing knowledge (accomplished by use of star tracker)</p>

RAVAN will fly as early as 2016

- Proposed to CubeSat Launch Initiative, 11/23/13
- RAVAN selected and ranked #2 (of 16)
- Recent discussion with CSLI suggests earliest possible launches in 2016, possibly 2017

CubeSat Mission Parameters												
Mission Name	Mass	Cube Size	Desired Orbit*		Acceptable Orbit Range	325 km @ 51.6 degree incl Acceptable – Yes or No	Readiness Date	Desired Mission Life				
RAVAN	5.5 kg	3U	Altitude	600–700 km	550–700 km	No**	1 Sep 2015	2 years				
			Inclination	80°–95°	> 40°	INU						

* non sun-synchronous

** 325 km too low

CubeSat Project Details											
	Student Involvement	NASA F	Funding		Proposal Collaboration						
Focus Area		Yes or No	Organization	Sponsor	Yes or No	Int'l – Yes or No					
1. Technology – VACNT-Based Bolometer Demo 2. Science – Climate Observation	Yes	Yes	ESTO	NASA	Yes	No					

Conclusions: Small package(s), new science

- Space constellations provide an opportunity for new kinds of Earth science observations
 - > Simultaneous global measurements at high temporal cadence
- Earth radiation budget constellation would provide
 - > Quantification of Earth radiation imbalance (local and global)
 - Smaller-scale processes associated with climate forcing
- RAVAN CubeSat mission demonstrates
 - > One element of ERB constellation
 - > New ERB measurement technologies: VACNTs, Ga BB
 - > Low-cost stepping-stone to new observations strategies

Funding: NASA Earth Science Technology Office

