On the Probability of Occurrence of Extreme Space Weather Events

Pete Riley, Predictive Science Inc., San Diego, CA.
Presentation to SSB Committee on Solar and Space Physics, October 7, 2014.
Motivation

What is the likelihood of another Carrington event happening in my lifetime?
Nature loves Power Law Distributions

Clauset et al. (2009)
Mathematical Background

\[p(x) = Cx^{-\alpha} \]

\[P(x \geq x_{\text{crit}}) = \int_{x_{\text{crit}}}^{\infty} p(x') \, dx' \]

\[P(x \geq x_{\text{crit}}) = \frac{C}{\alpha - 1} x_{\text{crit}}^{-\alpha+1} \]
\[\alpha - 1 = N \left[\sum_{i=1}^{N} \ln \frac{x_i}{x_{\text{min}}} \right]^{-1} \]

\[E(x \geq x_{\text{crit}}) = NP(x \geq x_{\text{crit}}) \]

\[P(x \geq x_{\text{crit}}, t = \Delta t) = 1 - e^{-\frac{N\Delta t}{\tau}P(x \geq x_{\text{crit}})} \]
For Bernouilli Events, with a constant probability of occurrence, the probability of occurrence is:

\[P(x) = \frac{1}{1 + \tau} \]

Where \(\tau \) is time to event.

E.g., if event occurs every 100 years, the probability of one occurring in the next decade is: \(1/(1+100/10) = 0.09 \) or 9%.

Reality Check: Time to Event
Assumptions

- Quasi-time-stationarity
- Poisson process (Independent events)
- Power-law distribution through at least the size of the Carrington event
A representative selection of space weather datasets...

- Hard Solar X-ray data from BATSE
- CME speeds
- Dst
- > 30 MeV Proton Fluences
- (Others: Equatorward edge of the diffuse aurora, Auroral indices, Kp, etc.)
Hard X-Ray Data from BATSE

Peak Rate (cts/s/2000 cm²) vs Time (Years)
Hard X-Ray Data from BATSE
CME Speed
CME Speed

(a) Number of Events vs. Speed (km/s)

(b) $P(X>x)$ vs. Speed (km/s)
Probability of an Extreme ICME (based on speed)

- Assume $V_{\text{cme-crit}} \geq 5,000 \text{ km/s}$
- Slope = -3.2
- Probability of observing such an event over the next decade:
 \[P(v>5,000 \text{ km/s}) \sim 85\% \]
CME Speed
Probability of and Extreme ICME (based on speed)

- For CMEs > 2,000 km/s,
- Slope = -6.1
- Revised probability:

\[P (v \geq 5,000 \text{ km/s, } \Delta t=10 \text{ yrs}) \sim 12\% \]
Dst

![Graph showing Dst (nT) over time from 1970 to 2010. The graph displays a wide range of values, with periodic fluctuations.]
Dst “Events” (Dst < -100 nT)
Dst Power Laws

(a) Number of Events vs. $|D_{stl}|$ (nt)

(b) $P(X > x)$ vs. $|D_{stl}|$ (nt)
Probability of an Extreme Geomagnetic Storm (based on Dst)

- For Dst < -850 nT:
 \[P(\text{Dst} \leq -850 \text{ nT}, \Delta t=10 \text{ yrs}) \sim 12\% \]

- For Dst < -1700 nT:
 \[P(\text{Dst} \leq -1700 \text{ nT}, \Delta t=10 \text{ yrs}) \sim 1.5\% \]
>30 MeV Fluences
>30 MeV Fluences

(a) >30 MeV Fluence (x10^9 cm^-3)

(b) >30 MeV Fluence (x10^9 cm^-3)
Probability of an Extreme SPE (based on >30 MeV Proton Fluences)

- Fluence > 18.8×10^9 cm$^{-1}$
- Slope = -2.0

$$P(>18.8 \times 10^9 \text{ cm}^{-1}, \Delta t=10 \text{ yrs}) \sim 3\%$$
Summary

- Probability of occurrence of a Carrington-like (or worse) event is sensitive to the definition of event.

- There are a number of assumptions that may or may not hold:
 - Time stationarity
 - Poisson process
 - Power-law distribution

- Major issue that remains to be addressed is the uncertainty associated with the predictions.
Future work

- How to assess the uncertainties?
 - Jeff Love’s work (next talk)
 - Maximum likelihood methods
 - Multiple models of the distribution’s tail - Robustness
 - Estimates of parameter and model uncertainty

- Assessing the temporal variability in extreme event probabilities

- Look at other measures of extreme event behavior (GICs, Eq. edge of diffuse aurora, etc.)

- Couple probabilistic forecasts with event-based physical/empirical models
Terrorist Attacks
Terrorist Attacks: World
Terrorist Attacks: USA
Terrorist Attacks: Evolution of Probability over last 40 years

![Graph showing the probability of terrorist attacks over the years.](image-url)