

ESD: FY16 President's Budget Request Overview and Program Status 31 March 2015

Earth Science Budget: FY16 Request/FY15 Appropriation

OVERALL SUMMARY (1 of 3)

• ESD budget increases significantly

	<u>FY15</u>	<u>FY16</u>	<u>FY17</u>	<u>FY18</u>	<u>FY19</u>	<u>FY20</u>
FY16	1.730	1.894	1.913	1.932	1.952	1.971
FY15		1.762	1.784	1.805	1.829	

- NASA now has mandate for additional long-term measurements for the nation:
 - Altimetry after Jason-3
 - Solar Irradiance, Ozone Profile, Earth Radiation Budget all starting in FY16
- Sustainable Land Imaging Program (w/USGS; NASA funds flight hardware):
 - TIR-FFD (2019)
 - Upgraded Landsat-9 (2023)
 - Focused technology development to inform designs of Landsat-10+
- Continued development and launch of: SAGE-III/ISS, ECOSTRESS/ISS, GEDI/ISS, CYGNSS, TEMPO, GRACE-FO, ICESat-2, SWOT, NISAR, PACE
- Continue Venture Class on schedule with full funding
- OCO-3 completion and flight to ISS in late 2017
- CLARREO Technology Demonstration instruments on ISS development and 3 flight in late 2019 (2 instruments, Reflected Solar/HySICS and IR Pathfinder)

ED 2015 Senior Review Mission Set

Extension Phase F

Prime

	CY	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19
TRMM				<u> </u>	1			1	1		1	1	1	1	1	1		1	1					
QuikSCAT						1		1	1		1			1					1					
Terra						;	i	-	r		1	1		1	1			1	1	1				
ACRIMSAT					\land															Missi	on Co	omple	ted	
EO-1																								
Jason 1								1											Miss	sion C	ompl	eted		
GRACE																								
Aqua								1	i									1						
SORCE									<u> </u>		[í					Δт	СТЕ	2		-TSIS	
Aura									\wedge															
CloudSat														1		[1					
CALIPSO												Î.		í 	[1	1	ì				
OSTM/Jason 2													\wedge					î.		ì				
Aquarius																\land								
Suomi NPP																	Most	tly DA	Only	/				
Landsat-8																		\wedge		DA C	Dnly		ι	JSGS
GPM																			\wedge	1				
OCO-2																		-	$\overline{\wedge}$					
	CY	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19
Future Missions																				sm	АР			FO
																							SS ICES	sat-2
ISS Payloads																						_		
RapidSC	AT																							
CA	TS																							
ISS SAGE	ш																							
ISS I	ls																				\square			
ISS TS	SIS																				<u> </u>	Δ		

SMAP First Light Image

SMAP First Light - Radar and Radiometer Data Feb 27-28, 2015 HH Normalized Radar Cross-Section H-Polarized Brightness Temperature

First image from a test of the radar instrument on NASA's Soil Moisture Active Passive (SMAP) satellite Feb. 27-28. The test was performed with SMAP's antenna in a nonspinning mode, which limits measurement swath widths to 40 kilometers (25 miles).

Image: NASA/JPL-Caltech/Goddard Space Flight Center

http://newsoffice.mit.edu/2015/first-light-images-nasa-smap-revealed-0310

OCO-2 Level 2 Product Status

- OCO-2 Level 2 products (global column CO₂ (XCO2)) are on track for release through GSFC DAAC by the end of March.
- The March 30th release will also include solar-induced fluorescence (SIF) and updated L1b files. The L1b updates correcting known deficiencies including instrument artifacts (e.g. solar cosmic rays and a minor "clocking" of slit to FPA).
- A forward data stream will arrive at the DAAC on March 30th, and backward processing at ~3x will begin shortly after. Forward data begins with March 19th. Backwards processing will extend to 9/6/14.
- The OCO-2 Science Team meeting was held Feb. 24 26th, 2015 in Pasadena. A broad cross section of the science team participated (118 in person, another 10 or so via webex).

- The image to the right shows a sample of the OCO-2 solar-induced fluorescence retrievals using both nadir and glint observations from 21 Nov to 29 Dec.
- The Northern Hemisphere fall Is evident in the lack of plant activity and therefore solar-induced fluorescence.
- Spring plant activity is evident in the high solar induced fluorescence values over South America, sub-Saharan Africa, and Indonesia.
- Month by month time series are consistent with the changing seasons.

SIF / (W m⁻² micron⁻¹ sr⁻¹) 0.00 0.12 0.25 0.38 0.50 0.62 0.75 0.88 1.00 1.12 1.25 1.38 1.50

OCO-2 Solar-Induced Chlorophyll Fluorescence, Nov-Dec 2014

GPM Observes Super Typhoon Hagupit on Dec. 5th

9

December 4th, 5th:

Super Typhoon Hagupit threatens the Philippines a year after deadly Super Typhoon Haiyan devastated the island nation. GPM's Microwave Imager (GMI) observed extreme rates of almost 100.9 mm (almost 4 inches) per hour on the southern side of Hagupit's eye.

The Naval Research Lab (NRL) is using GMI and other sensors in their Automated Tropical Cyclone Forecasting System (ATCF) for improved track prediction.

http://www.prlmry.payy.mil/tc_pages/tc_home.html

RapidScat Measurements of Hagupit

22.5°N

20°N

17.5°N

15°N

12.5°N

10°N

Note speed scale difference

Early CATS Image

The CATS image shows a profile of particles in the atmosphere over a swath of Africa, from 30 degrees North to 30 degrees South, as the space station flew over it in the early morning of Feb. 11.

International Space Station

ESP-3

ELC-2

AMS

ELC-4

Columbus EF

SAGE III (CY2016)

External Logistics Carriers – ELC-1, ELC-2, ELC-3 External Stowage Platforms – ESP-3 Alpha Magnetic Spectrometer Columbus External Payload Facility Kibo External Payload Facility

RapidSCAT (2014-)

CATS (2015-) HICO (2009-2014) GEDI (2020) ECOSTRESS (2020)

ELC-3

ELC-1

JEMEF

LIS (2016)

CLARREO Pathfinders (CY2019)

NASA's Earth Science Division

Flight

Applied Sciences

The state of the second

OVERALL SUMMARY (2 of 3)

Earth Science Research

	<u>FY15</u>	<u>FY16</u>	<u>FY17</u>	<u>FY18</u>	<u>FY19</u>	<u>FY20</u>
FY16	399	432	417	425	418	414
FY15		424	400	390	392	

- Includes funding to improve understanding of coupled North Atlantic-Arctic system
- Includes additional funding for research to understand linkages between oceans and climate

♦ Funds CDI, BEDI/GCIS, CRT/Citizen Science

Applied Sciences

	<u>FY15</u>	<u>FY16</u>	<u>FY17</u>	<u>FY18</u>	<u>FY19</u>	<u>FY20</u>
FY16	40.4	47.6	48.7	48.4	47.6	48.8
FY15		38.0	38.7	39.8	39.8	

♦ Will be used to accelerate ramp-up of Water and Food Security initiatives

OVERALL SUMMARY (3 of 3)

Earth Science Technology Office

	<u>FY15</u>	<u>FY16</u>	<u>FY17</u>	<u>FY18</u>	<u>FY19</u>	<u>FY20</u>
FY16	59.7	60.7	62.1	61.5	61.2	62.7
FY15		54.5	55.6	55.5	55.6	

♦Increase for the InVEST program (~ \$5M/year additional)

- Precision Altimetry following the launch of Jason-3
 - FY16-20 budget supports NASA contributions to Jason-CS
 - LV, radiometer, laser retroreflector; etc. NASA funding for mission ops and data analysis; 2020 launch
 - Continued development of SWOT (2020 launch)
- Solar Irradiance
 - TSIS-2 and beyond transferred to NASA in FY14
 - FY16-20 budget supports completion of TSIS-1 and flight on ISS, LRD August 2017
 - Recognizes NOAA FY15 appropriation for TSIS-1
- Earth Radiation Balance (RBI instrument)
 - RBI continues to be developed by NASA for flight on JPSS-2

Landsat History

^aLimited data due to transmitter failure soon after launch. Only 45,172 Landsat 4 Thematic Mapper scenes from 1982–1993 available for science users—~10 scenes/day (vs 725 scenes/day from L8)

^bData coverage limited to Continental US (CONUS) and International Ground Station sites after a transmitter failure in 1987; Multispectral Scanner turned off in August 1995 ^cDegraded Performance due to Scan Line Corrector failure in May 2003

- The Landsat program began as the Earth Resources Technology Satellites Program in 1966, with Landsat 1 (ERTS) launched in July 1972
- NASA built and launched Landsats 1-5 and Landsats 7-8
- Thermal band added for Landsats 3 and beyond
- After launch, Landsat operations are transferred from NASA to USGS, and USGS collects, archives, processes, and distributes the image data via the internet at no cost to users
- Landsat 8 began as a data purchase and became known as the Landsat Data Continuity Mission (LDCM)
 - Although the thermal bands were originally not incorporated in the mission, they were added back into the Observatory's capabilities following strong support from a variety of stakeholders

SLI in FY16 President's Budget Submit

- A multi-component program, with the essential investments in technology and observational innovation to ensure a world class, sustainable, and responsible land imaging program through 2035:
 - 1. TIR-FF (Class D Thermal Infrared Free Flyer) to launch ASAP (no later than 2019) and to fly in constellation with a reflective band imager like OLI on L-8
 - Low-cost mitigation against an early loss of the Landsat 8 Class C TIRS, while demonstrating feasibility of constellation flying for land imaging
 - 2. Landsat 9 (Class B upgraded rebuild of Landsat 8) to launch in 2023
 - Low programmatic risk implementation of a proven system with upgrades to bring the whole system to Class B
 - 3. Land Imaging Technology and Systems Innovation
 - Hardware, operations and data management/processing investments to reduce risk in next generation missions.
 - 4. Landsat 10
 - Mission definition to be informed by the Technology investments, leading to key mission configuration/architecture decisions by the end of the decade

NASA Budget for	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020
Sustainable Land Imaging	\$30,000	\$64,100	\$78,900	\$134,600	\$174,400	\$179,900	\$147,300

Landsat Future

Sustainable Land Imaging (SLI) Architecture

Thermal IR Free Flyer, TIR-FF

- The primary objective is to provide an alternate source of thermal IR imagery by 2019 specifically in advance of the TIR channels provided on Landsat 9 (2023 launch date).
 - Thermal IR measurements provide unique, precise information on water use (primarily for crop irrigation) and urban heating
 - Studies have indicated that the TIR measurements are at the greatest risk of continuity because (1) the L8 TIRS has only a 3-year design life; (2) stray light and hardware issues have already degraded the reliability and performance of the L8 TIRS; and (3) the EU Sentinel satellites do not include thermal channels
 - TIR-FF will fly in constellation with another land imaging satellite, likely Landsat 8 or Sentinel-2
- The TIR-FF development is assigned to NASA/GSFC for implementation
 - Small satellite
 - Simple instrumentation
 - Dedicated small launch vehicle

TIR-FF will follow a Class D implementation to ensure rapid development, with a launch targeted for 2019

Landsat 9

- The Landsat 9 mission: a near-repeat build of the LDCM/Landsat 8 system, upgraded to full Class B, to launch in 2023.
 - Ensures the baseline Landsat data record is continued into the late 2020s with minimal programmatic and technical risk
 - The ground system is fully defined, needing incremental additions only
- Rebuild based on the successful Landsat 8 observatory, with specific modifications:
 - The Landsat 9 TIRS instrument would be upgraded to full Class B configuration (5-year design life; in-house NASA/GSFC build)
 - Spacecraft competed and modified as required to accommodate upgraded TIRS
 - Commercial management/oversight practices explored for cost savings at acceptable risk

Technology and Systems Innovation

- Persistent investment in technology and observational innovation is essential for a world class, sustainable, and responsible land imaging program.
- The Plan includes a budget for technology and systems innovation that rises to ~5% of the total SLI budget line.

At the **component/technology** level examples of specific investigations include:

- Focal plane technology to support wide swath, moderate resolution imagery for multispectral and hyperspectral instruments; Underway
- Hyperspectral thermal measurements; Underway

At the system level, examples of specific technical investigations include:

- Instrument miniaturization approaches to meet program observing objectives with smaller, less expensive satellites; Underway
- Integrated instrument approaches combining VISNIR and TIR channels

At the **programmatic** level, examples of specific investigations include:

- Commercial and hybrid commercial/governmental procurement and management approaches; Underway
- Integration of multiple data sets from an open array of satellite observations to create a seamless land imaging archive for the user, including TIR-FF + Landsat 8 or + Sentinel 2 Underway with ROSES (NASA's competitive research program) solicitation/selections

Near-term work will inform the Landsat 10 configuration decision (L10 development to start in early 2020's)

Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) is an ocean color, aerosol, and cloud mission identified in the 2010 report "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space Science".

Science Objectives

- Primary: Understand and quantify global biogeochemical cycling and ecosystem function in response to anthropogenic and natural environmental variability and change: ocean color sensor
- Secondary: Understand and resolve/quantify the role of aerosols and clouds in physical climate (the largest uncertainty): polarimeter
- Extend key Earth system data records on global ocean ecology, biogeochemistry, clouds, and aerosols (expanded ocean color sensor similar to MODIS)

LCC	\$805M Cost Cap
Payload	 Ocean color instrument: potential for a polarimeter
Duration	3 years
Orbit	 97° inclination; ~650 km altitude; sun synchronous
Launch	 2022/2023, budget and profile driven
Risk	8705.4 Payload Risk Class C

PACE Cost Cap

Cap is \$805M and includes the following:

- Project team at GSFC (to include PM, SE, & SMA functions)
- Spacecraft bus
- Launch vehicle
- Instrument payload
- 3 years of mission operations
- Project-held UFE
- Data processing/analysis to be performed by GSFC's Ocean Biology Processing Group (OBPG)
- Mission Science
 - Calibration/validation (hardware and conducting cal/val)
 - Science team support (development phase and post launch)

Venture Class Solicitation Schedule

Mission	Mission Type	Solicitation Release	Proposal Selection	Major Milestone	Total Funding*
EVI-3	Instrument Only	Q2 FY2015	Q2 FY2016	Delivery NLT 2020	\$130M
EVI-4	Instrument Only	Q4 FY2016	Q4 FY2017	Delivery NLT 2021	\$150M
EVI-5	Instrument Only	Q2 FY2018	Q2 FY2019	Delivery NLT 2023	\$182M
EVI-6	Instrument Only	Q4 FY2019	Q4 FY2020	Delivery NLT 2024	\$155M
EVI-7	Instrument Only	Q2 FY2021	Q2 FY2022	Delivery NLT 2025	\$185M
EVM-2	Full Orbital	Q3 FY2015	Q3 FY2016	Launch ~2021	\$165M
EVM-3	Full Orbital	Q3 FY2019	Q3 FY2020	Launch ~2025	\$179M
EVS-2	Suborbital	O4 FY2013	O1 EY2015	2016-2020	\$162M
EVS-2	Suborbital	Q4 FV2017	04 EV2018	2010-2020	\$176M
LV3-3	Suborbitar	Q4112017	Q4112010	2019-2023	φττοινι

Open solicitation

* Funding for future EVs is approximate and will be adapted depending on previous selections.

NASA

ROSES 2015 ESD Elements

A.2 Land Cover Land Use Change	12/1/15 (step 1)
A.8 Physical Oceanography	6/30/15
A.10 Surface Water and Ocean Topography Sci. Team	5/15/15
A.13 Modeling, Analysis, and Prediction	5/14/15
A.14 Cryospheric Science	6/16/15
A.15 IceBridge Observations	5/18/15
A.19 KORUS-AQ: An International Cooperative Air Quality	
Field Study in Korea	5/15/15
A.22 Science Utilizaiton of the Soil Moisture Active-Passive	
Mission	5/19/15
A.23 Precipitation Measurement Missions Science Team	6/30/15
A.26 Rapid Response and Novel Research in Earth Sci.	Rolling
A.27 GRACE and GRAE-FO Science Team	6/19/15
A.33 CloudSat and CALIPSO Science Team Recompete	7/31/15
A.34 Satellite Calibration Interconsistency Study	9/8/15
A.35 New (Early Career) Investigator Program in Earth Sci.	8/31/15
A.36 Adv Collaborative Connections for EarthSystem Sci.	724/15
A.42 In-Space Validation of Earth Science Technologies	5/29/15
A.43 NASA ISRO Snthetic Aperture Radar Mission SDT	6/8/15
Plus 4 TBD elements (will determine later)	

ROSES12 Funded 14 Climate Indicators Projects

Project	PI	Project	PI	
Land Cover Indicators for U.S. National Climate Assessments	<i>William Emanuel</i> PNNL	Translating EOS Datasets Into National Ecosystem Biophysical Indicators	<i>Steve Running</i> U. of Montana	
The Agricultural Productivity Indicator Analysis System (APIAS): Tracking the Agricultural Impacts of Climate Variability and Change	<i>Alex Ruane</i> GSFC/GISS	Using NASA Earth Science Datasets for National Climate Assessment Indicators: Urban Impacts of Heat Waves Associated with Climate Change	<i>Stephanie Weber,</i> Batelle Memorial Institute	
The Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine	<i>Harry Stern</i> UW-Seattle	Water Cycle Intensification Indicator (WCI)	<i>Paul Houser</i> George Mason	
Mammal Habitat		Inland Water Temperature: An Ideal	Simon Hook	
Cryosphere Radiative Forcing: An Indicator of Climate Feedback	<i>Mark Flanner</i> U. of Michigan	Indicator for the National Climate Assessment	JPL	
and Environmental Change		Development of a Water Clarity Index	Scott Sheridan	
Development and Testing of a Dust Indicator for Climate	<i>Daniel Tong</i> George Mason	for the Southeastern U.S. as a Climate Indicator	Kent State	
States		Development of Integrated Land	Kyle McDonald	
Indicators Derived From	William Koshak MSEC	Climate Assessment	New York	
Observations		Improving Assessment of Regional	Rong Fu	
Frequency of Winter Weather Jianhua Qia		Regional Resilience to Extreme	UT-Austin	

New indicators of climate change leveraging NASA remote sensing resources

Early Warning of Summer Drought over Texas and the South Central U.S. PI: Rong Fu, University of Texas - Austin

Statistical indicator for summer rainfall and drought prediction

- 70% effectiveness
- Outperforms existing models
- Utilizes data from MERRA
- Published report with the Texas Water Development Board

Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine Mammal Habitat

Habitat change indicator for ice dependent marine mammals

- Utilizes data from NSIDC
- Polar bear results are being used by Canada, Nunavut, Greenland, and the International Union for Conservation of Nature Red Liss and Polar Bear Specialist Group

2005-2014 Airborne Campaigns

HS3 2012 - 2014

© 2014 Google US Dept of State Geographer-Image Landsat Data SIO, NOAA, U.S. Navy, NGA, GEBCO Google earth

SABOR

NASA Field Campaign to Probe Ocean Ecology, Carbon Cycle

THE UNIVERSITY OF MAINE OSU Oregon State UNIVERSITY

> The <mark>City</mark> College of New York

www.nasa.gov/earthrightnow

#AskNASA

Earth Venture Suborbital-2 (EV-2) Investigations

Atmospheric Tomography Experiment (ATom) – Harvard University (Steve Wofsy)

This investigation will study the impact of human-produced air pollution on certain greenhouse gases. Airborne instruments will look at how atmospheric chemistry is transformed by various air pollutants and at the impact on methane and ozone which affect climate. Flights aboard NASA's DC-8 will originate from the Armstrong Flight Research Center in Palmdale, California, fly north to the western Arctic, south to the South Pacific, east to the Atlantic, north to Greenland, and return to California across central North America.

North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) – Oregon State U. (Mike Behrenfeld)

This investigation will improve predictions of how ocean ecosystems would change with ocean warming. The mission will study the annual life cycle of phytoplankton and the impact small airborne particles derived from marine organisms have on climate in the North Atlantic. The large annual phytoplankton bloom in this region may influence the Earth's energy budget. Research flights by NASA's C-130 aircraft from Wallops Flight Facility, Virginia, will be coordinated with a University-National Oceanographic Laboratory System (UNOLS) research vessel.

Atmospheric Carbon and Transport – America – Penn State University (Kenneth Davis)

This investigation will quantify the sources of regional carbon dioxide, methane and other gases, and document how weather systems transport these gases in the atmosphere. The research goal is to improve identification and predictions of carbon dioxide and methane sources and sinks using spaceborne, airborne and ground-based data over the eastern United States. Research flights will use NASA's C-130 from Wallops and the UC-12 from Langley Research Center in Hampton, Virginia.

ObseRvations of Aerosols Above Clouds and Their IntEractionS (ORACLES) – ARC (Jens Redemann)

ORACLES will probe how smoke particles from massive biomass burning in Africa influences cloud cover over the Atlantic. Particles from this seasonal burning that are lofted into the mid-troposphere and transported westward over the southeast Atlantic interact with permanent stratocumulus "climate radiators," which are critical to the regional and global climate system. NASA aircraft, including a Wallops P-3 and an Armstrong ER-2, will be used to conduct the investigation flying out of Walvis Bay, Namibia.

Oceans Melting Greenland (OMG) – JPL (Josh Willis)

The objective of OMG is to investigate the role of warmer saltier Atlantic subsurface waters in Greenland glacier melting. The study will help pave the way for improved estimates of future sea level rise by observing changes in glacier melting where ice contacts seawater. Measurements of the ocean bottom as well as seawater properties around Greenland will be taken from ships and the air using several aircraft including a NASA S-3 from Glenn Research Center in Cleveland, Ohio, and Gulfstream III from Armstrong.

Examples of New Airborne Sensors or those in Continuing Development

 HyTES is a hyperspectral, airborne imaging spectrometer with 256 spectral channels between 7.5 and 12 µm. It currently flies on Twin Otter aircraft but is being adapted to fly on the ER-2

eMAS consists of two bore-sighted imaging spectro-radiometers: eMAS-Scanner: 38 bands ($6.7\mu m -$ 14.0 μm ; $3.7\mu m$; 445 – 2400nm) and eMAS-HS Imager: 205 bands 400 – 2450nm $\Delta\lambda$ 10nm; they simulate satellite observations, validate radiances, And prototype future imager requirements

AVIRIS-ng extends capaiblities of AVIRISc with higher spectral resolution and SNR

PRISM covers the spectral range from 350 to 1050 nm at 2.85 nm resolution, with two longer wavelneth channels

The need to space-validate new technologies is critical to reduce risk for future Earth science measurements. The In-Space Validation of Earth Science Technologies (InVEST) program is intended to fill the gap. The first InVEST solicitation in 2012 sought small instruments and subsystems that advance technology to enable relevant measurements and targeted the CubeSat platform.

> The *Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat* will validate multiple subsystem technologies and demonstrate new miniature microwave radiometers operating near 52-58, 175-191, and 206-208 GHz that could dramatically enhance the capabilities of future temperature and humidity measurements. - K. Cahoy, MIT; Launch NET 2016

The *Radiometer Assessment Using Vertically Aligned Nanotubes (RAVAN)* project will demonstrate a bolometer radiometer that is compact, low cost, and absolutely accurate to NIST traceable standards. RAVAN could lead to affordable CubeSat constellations that, in sufficient numbers, might measure Earth's radiative diurnal cycle and absolute energy imbalance to climate accuracies (globally at 0.3 W/m2) for the first time. - W. Swartz, JHU/APL; Launch NET 2016

The objective of the *CubeSat Flight Demonstration of a Photon Counting Infrared Detector (LMPC CubeSat)* is to demonstrate in space, a new detector with high quantum efficiency and single photon level response at several important remote sensing wavelength detection bands from 1 to 2 microns. - R. Fields, Aerospace Corporation; Launch NET 2016

The *HyperAngular Rainbow Polarimeter HARP-CubeSat* will validate a technology required by the Aerosol-Cloud-Ecosystem (ACE) mission concept and prove the capabilities of a highly-accurate, wide-FOV, hyperangle, imaging polarimeter for characterizing aerosol and cloud properties.

- J. V. Martins, UMBC; Launch NET 2016

IceCube is a three unit (3U) CubeSat under development to validate a 874-GHz radiometer receiver for future use in ice cloud measurement missions. This submillimeter wave radiometer technology could directly benefit an ice cloud imaging radiometer such as that called for by the Aerosol-Cloud-Ecosystem (ACE) mission concept.

D. Wu, NASA Goddard Space Flight Center; Launch NET 2016

InVEST-12 (\$13M total; selections made 5/03/13); limited to 3U

All tasks are progressing on schedule. Launch opportunities are being identified for 2016.

Microwave Radiometer Technology Acceleration (MiRaTA)

CDR scheduled for 4/13-14/15

Radiometer Assessment Using Vertically Aligned Nanotubes (RAVAN)

Second year interim review held 2/23/15

Cubesat Flight Demonstration of a Photon Counting Infrared Detector (LMPC CubeSat)

CDR scheduled for 5/08/15

HyperAngular Rainbow Polarimeter (HARP)

• Second year interim review held 2/24/15

IceCube

CDR scheduled for4/28/15

InVEST-15 (\$14.6M total) - Solicitation is now open; up to 6U NOI's due: 3/27/15; Proposals due: 5/29/15 Selections expected late FY2015

Awards are for 3 years nominally. PI's develop to flight readiness. Launches are provided through the NASA CubeSat Launch Initiative (CSLI) program.

- The AMS Helmut E. Landsberg Award went to Jeffrey Luvall and Dale Quattrochi of MSFC. The citation reads "For original contributions and leadership in using high-resolution thermal remote sensing data to understand the urban heat island effect and its environmental consequences"
- The AMS Cleveland Abbe Award for Distinguished Service to Atmospheric Science was presented to former NASA scientist and executive Dixon M. Butler "For visionary, dedicated leadership in Earth observation, science education and federal management of science which has had lasting impact on the development of Earth System Science."
- The AMS Board on Outreach and Pre-College Education (BOPE) named the NASA-led GLOBE program as a winner of the "2014 Distinguished Educator Recognition Program"
 – with Tony Murphy of UCAR the lead recipient.
- In February 2015, JPL Director for the Center for Climate Sciences Graeme L. Stephens, and NASA PI (and former IPA) Eric F. Wood were elected to the National Academy of Engineering, the highest professional distinction for engineers.
- Among the AGU Fellows in 2014 were Christian Frankenberg (JPL), Phil Russell (ARC), former GISS employee Drew Shindell (now Duke Univ.), former AA Ghassem Asrar (now PNNL/JGCRI), and numerous present and former principal investigators

Communications Tools for NASA's Global Environmental Data

Eyes on the Earth-3D Website*

Earth Observatory Web Site

*Software demonstrated to audience at US Center at COP-18 meeting in Doha, Qatar

Dynamic Planet

Climate.nasa.gov web site

NASA Earth Now iPhone App

NASA Hyperwall

Your Planet is Changing Earth Right Now We're on it!

