Achieving Science Goals with CubeSats
Swartwout, 2013: The First One Hundred CubeSats: A Statistical Look
Key Elements of Charge

- Review the current state of scientific potential and technological promise of CubeSats
- Review the potential of CubeSats as platforms for obtaining high-priority science data
 - From recent decadal reviews
 - Science priorities in 2014 NASA Science plan
- Provide a set of recommendations on how to assure scientific return on future federal agency support of CubeSat programs
Committee Actions

- Develop summary of status, capability, availability and accomplishments in government, academic and industrial sectors
- Recommend any potential near-term investments that could be made to
 - A) improve the capabilities that have a high impact and return
 - B) enable the science communities’ use of CubeSats
- Identify a set of sample priority science goals that describe near-term science opportunities
Work Plan

- Ad Hoc Committee has ~ 15 scientists and engineers
- Initial information gathering symposium of 1-3 days, and other input processes such as town hall meetings at conferences
- Meet as committee to further gather input and synthesize what is learned about
 - Status quo of CubeSats in research, innovation, education
 - Funding sources, programs, etc.
 - Enabling technologies, etc.
 - Evolutionary path of CubeSats, etc.
 - Limitations, barriers of this technology, etc.
 - Many more
- Anticipated completion Spring of 2016
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas H. Zurbuchen</td>
<td>U of Michigan, Chair</td>
</tr>
<tr>
<td>Abigail Sheffer</td>
<td>NRC, Study Director</td>
</tr>
<tr>
<td>Stuart D. Bale</td>
<td>UC Berkeley</td>
</tr>
<tr>
<td>Andrew Clegg</td>
<td>Google</td>
</tr>
<tr>
<td>Bhavya Lal</td>
<td>IDA</td>
</tr>
<tr>
<td>Paulo Lozano</td>
<td>MIT</td>
</tr>
<tr>
<td>Malcolm Macdonald</td>
<td>University of Strathclyde</td>
</tr>
<tr>
<td>Robyn Millan</td>
<td>Dartmouth</td>
</tr>
<tr>
<td>Charles Norton</td>
<td>JPL</td>
</tr>
<tr>
<td>William H. Swartz</td>
<td>APL</td>
</tr>
<tr>
<td>Alan Title</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>Thomas Woods</td>
<td>U Colorado</td>
</tr>
<tr>
<td>Edward L. Wright</td>
<td>UC Los Angeles</td>
</tr>
<tr>
<td>A. Thomas Young</td>
<td>Retired LMCO</td>
</tr>
</tbody>
</table>
Approach

- First meetings are focused on collecting data
 - CubeSat launches, successes etc.
 - Publication numbers, characteristics, etc.
 - Policy issues
 - Best science ideas for CubeSats today
 - Type of science addressed by CubeSats

- Then, integration towards findings and recommendations
Meetings

- **Meeting #1:** June 20-21, 2015 in DC
 - NSF, NASA, DOD, USGS, NOAA statements
 - Policy issues: debris and communications
- **Meeting #2:** September 2-3, 2015 in Irvine
 - Community symposium
 - Science focus
 - Committee-only meeting on September 4
- **Meeting #3:** October 22-23, 2015
 - Focus on integration, recommendation
- **Meeting #4:** October 30, 2015
 - Policy focus
- **Meeting #5:** January 16-17, 2016 ISSI forum
 - International focus
What we want to learn this week

- The current state of scientific potential and technological promise of CubeSats
- The potential of CubeSats as platforms for obtaining high-priority science data
 - From recent decadal reviews
 - Science priorities in 2014 NASA Science plan
- Ideas on how to assure scientific return on future federal agency support of CubeSat programs. What are challenges that limit scientific return?
Inputs

- Talk to moderators and note takers. They will try to find you also at your posters.

- Or by Email to
 - Thomas Zurbuchen (thomasz@umich.edu)
 - Abby Sheffer (ASheffer@nas.edu)