

CubeSat for Planetary Science and Exploration

Breaking New Grounds

Julie Castillo-Rogez, Research Scientist Jet Propulsion Laboratory

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

Classes of Applications

INSPIRE, MarCO, and EM-1 CubeSats as Stepping Stones to Deep Space

Outline

Science Pull for Planetary CubeSats

3U and 6U Planetary CubeSat Landscape

Visions for Future Voyages

Parting Thoughts

Outline

Science Pull for Planetary CubeSats

NASA Strategic Goals

PLANETARY SCIENCE

Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere.

- Explore and observe the objects in the solar system to understand how they formed and evolve.
- Advance the understanding of how the chemical and physical processes in our solar system operate, interact and evolve.
- Explore and find locations where life could have existed or could exist today.
- Improve our understanding of the origin and evolution of life on Earth to guide our search for life elsewhere.
- Identify and characterize objects in the solar system that pose threats to Earth, or offer resources for human exploration.

- Building New Worlds—advance the understanding of solar system beginnings (1, 2)
- b. Planetary Habitats—search for the requirements for life (3, 4)
- Workings of Solar Systems—reveal planetary processes through time (1, 2, 5)

Planetary Science Decadal Survey Priorities

Multi-Scale Exploration

HUMAN

EXPLORATION

Potential Landing Sites

Phobos

Science Pull for Planetary CubeSats IAA Planetary CubeSat Study (2015)

Science enablers

- Distributed measurements for dynamic processes
- Impactor/observer architecture (cooperating assets)

Alternative low-cost architectures

Fractionated payload for system science

High-risk, high-reward observations

- Access to unique vantage points
- Risk assessment by sacrificial probe

Breaking new grounds

Exploration of uncharted regions

Outline

Science Pull for Planetary CubeSats

3U and 6U Planetary CubeSat Landscape

Science Applications

CubeSat-Based Measurements

that have been proposed so far

 \bullet

Fields and particles

- Distributed/simultaneous magnetic field measurements
- Dust and gas/plume composition
- Radiation
- Plasma characterization
- Atmospheric Science
 - Distributed atmospheric measurements
 - Atmospheric composition (noble gases)
- Reconnaissance
 - High-risk site study and reconnaissance (eg caves, landing sites, etc.)
 - Object characterization
 - Water search
- In-Situ
 - Elemental, Isotopic & Mineralogical composition
 - Regolith mechanical properties
 - Surface dust dynamics

State of Small Instruments

JPL's Technology Demonstration CubeSats via Discovery

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

Science has to Compete for Resources

Deep Space Environment Challenges

- Radiations require rad-hard subsystems and extra mass for shielding
- Limited power beyond 1 AU impacts operations and science return
- → Instrument volume is limited to 0.5-1 U
 - Small aperture/sampling drives integration time
- Long distance is severe limitation to science data retrieval
 - Data rates beyond the Moon are between 0.5 and 8 kbps
 - Long downlink times drive thermal issues

NN SPACE No one can hear You scream

ESPECIALLY WHEN YOU HAVE A TINY ANTENNA

SCIENCE PERFORMANCE METRICS

Payload Sensitivity and Resolution the

- Scales with instrument size

Delta-V - A few 100 m/s to km/s

Pointing (control and stability) Loose (fields), up to 7.2 arcsec accuracy, 1 arcsec stability in 1 sec.

Position Control – km-scale per radio-tracking; <100m with optical navigation

Data Volume - 10s Mb for fields/particles; 100s Mb for geology and chemistry

Mission Architectures (1/2) Independent CubeSat

LEO Observatory	CubeSat at the Moon	And Beyond
AOSAT (ASU)	Lunar IceCube (MSU, GSFC)	NEAScout (AES – MSFC/JPL/LaRC/JSC/GSFC)
e.g., low-cost, low- gravity laboratories, meteor observatories, continuous Jupiter photometry	e.g., Radiation monitoring, search for water, surface reconnaissance	e.g., physics, chemistry, and processes characterization for many objects
P/L ∆V Ptg Pos Data	P/L ΔV Ptg Pos Data	P/L AV Ptg Pos Data

Near Earth Asteroid Scout

Marshall Space Flight Center/Jet Propulsion Lab/LaRC/JSC/GSFC/NASA

One of three 6U Cubesats sponsored by Advanced Exploration System, Joint Robotic Program to fly on SLS EM-1

GOALS

Characterize one candidate NEA with an imager to address key Strategic Knowledge Gaps (SKGs)

Demonstrates low cost capability for HEOMD for NEA detection and reconnaic sance

Measurements: NEA volume, spectral type, spin and orbital properties, address key physical and regolith mechanical SKGs

Science Performance of NEAS 6U

- Payload introduces IntelliCam
 - Meets resolution requirement of 10cm/pix at >500m distance
 - Meets sensitivity requirement to detect H=28 target at >10,000 km distance
- Pointing control/stability is met
 - Pointing knowledge is limited by current technology

• 0.5 to 1.7 km/s ΔV : Will definitely go places!!

•Target pool is limited by camera aperture

- Biggest limitation is data volume vs power/thermal
 - Mitigated with operational strategies
 - •Science software to increase data acquisition robustness

Data Handling with "Agile Science" Resources

Target Detection and approach with wide field imaging

Ephemeris determination

Downlink rate <1 kbps Large target position uncertainty Target Reconnaissance with medium field imaging Shape, spin, and local environment

Short flyby time (<30 min) Uncertain environment **Close Proximity Imaging** Local scale morphology, terrain properties, landing site survey

Short time at closest approach (<10 min.) Downlink rate <1 kbps past C/A

Autonomous sky scanning sequence Image co-adding subwindowing Compression

Autonomous target pointing and **gain setting** Thumbnails, triage, lossless compression, subwindowing

Mission Architectures (2/2) Carrier/Relay

Complementary vantage points; remote vs. in situ exploration; cooperation for motion planning, etc. *Can accommodate various form factors*

Pta

Distributed sensors for field, atmosphere, or system-wide exploration; constellation networks for event triangulation

Ptg

Ring provides most of the ΔV and telecom relay; can reach asteroid main belt, potentially outer Solar system;

Ptg

P/I

Pos

P/L

Pos

In Situ Exploration with MASCOT On Hayabusa-2

MASCOT's Science Performance

Outline

Science Pull for Planetary CubeSats

3U and 6U Planetary CubeSat Landscape

Visions for Future Voyages

New Deep Space Tailored CubeSat Subsystems

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

Characterizing Europa's Deep Ocean

Distributed Magnetometer Network at Europa

Particle detector (0.5 U)

- Based on INSPIRE's design upgraded with electronics vault fits in 3 U
- Life time requirement is < 48 hours
- Particle detector is combined with magnetometer and provides additional shielding

Landing Site Reconnaissance

Explorer CubeSat for Student Involvement in Travels to Europa

achieved via reaction wheels and thrusters

- "Ranger-Style" probe relays images down to 1 km to the surface
- Based on INSPIRE's design upgraded with electronics vault – fits in 3 U
- Life time requirement is < 10 hours

Comet Volatile Isotopic Composition for Origin Science To obtain a high-precision oxygen isotopic measurement from

To obtain a high-precision oxygen isotopic measurement from a Jupiter-family comet

Mission to 46P/Wirtanen in December 2018 (<0.1 AU)

2: 46P/Wirtanen 12/16/2018 $V_{\infty} = 10.675 \text{ km/s}$ 1: Earth 08/18/2018 $C_3 = 0.9 \text{ km}^2/\text{s}^2$ Dec. = 9.7 deg.

WISPER uses a millimeter wave spectrometer (cf. MIRO)

D

31

- Mission would fly by <1000 km from Wirtanen
- Performance requirement exceeded by ~50%

Mission Concept - Pre-Decisional – for Planning and Discussion Purposes Only

Outline

Science Pull for Planetary CubeSats

3U and 6U Planetary CubeSat Landscape

Visions for Future Voyages

Parting Thoughts

Can I Have Another U (or 6?)

Doubling the Volume Offers Major Advantages

Increase antenna size

 $\circ~$ E.g., combine MarCO's reflectarray with NEAS avionics

• Increase ΔV

- Pack more propellant, more efficiency
- Add another instrument
 - On top of camera
- Increase lifetime (nanolanders)
- Selected redundancy
 - o Backup reaction wheels
 - Redundancy on key avionic components (e.g., computer)

Can I Have a Different Form Factor? *Tailoring to specific applications*

Comet Impactor (ASU/JPL Discovery Tech Demo)

Small Body Hoppers (Hedgehog, Stanford/MIT/JPL; POGO, APL)

Atmospheric Probe (MarsDrop, JPL)

Considerations

- We're almost there!
 - Advances promoted by AES and internal R&TD programs are bringing CubeSats to the next level
- CubeSats have the potential to enable novel architectures for decadal-class science
 - Space is hard Deep space CubeSats are not cheap
 - Going places takes time Operations for deep space
 CubeSats should be expensive
- Cost/Risk posture will determine success

Nanosats provide an opportunity for (relatively) low cost focused science and technology investigations

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.