

Galaxies and Clusters Across Cosmic Time

Megan Donahue

Michigan State University

The universe turned up to 11

Distant Galaxy Lensed by Cluster MACS J0647

HST ■ ACS ■ WFC3

Hubble Frontier Field Abell 2744

Hubble Space Telescope • ACS • WFC3

NASA and ESA

STScI-PRC14-01a

Abell 2744 and lensing model

Reionization

- Quasar GP (e.g. SDSS 2001) ends, $z \sim 6$ ($z= 5.5-7$ Becker+2015)
- Planck+ : starts, $z \sim 11$ (Planck 2013)
- 21-cm work (theory and experiment) in progress (SKA)

Black Hole Spin in AGN

AGN Spin

NuStar+XMM

Risalit+2013 Nature

SMBH NGC1365

SF through cosmic time

Abundance matching and SF history

Why does the stellar mass fraction peak at $M_{\text{halo}} \sim 10^{12}$ solar?

Why does the SFR peak at $z=2$ then plummet?

Behroozi, Wechsler, Conroy 2013ab;
consistent with other abundance-matching
efforts (e.g. Moster+2010,2013,Reddick+2012)

Color:
SFR/mass
accretion
rate

Behroozi+2013a

SF efficiency peaks at $M_h \sim 10^{12}$ solar masses
independent of redshift ($z < 4$)

Stellar and AGN Feedback: Simulations

Λ CDM + Gravity + Hydro + Cooling: not done yet...
 WHY IS STAR FORMATION SO INEFFICIENT?

Elmegreen 77, Larson 81,
 & many since

State of the Art Today

STAR FORMATION & GALAXY FORMATION TOGETHER AT LAST

FIRE: Feedback in Realistic Environments

- High-resolution (~pc), molecular/metal cooling (~10 K), SF at $n_{\text{H}} > 1000 \text{ cm}^{-3}$
- Energy/Mass/Metals:
 - SNe (II & Ia)
 - Stellar Winds (O & AGB)
 - Photoionization (HII) & Photo-electric
 - Radiation Pressure (IR & UV)
 - Cosmic Rays
- all with...
 - Magnetic fields
 - Cooling, chemistry
 - Conduction, viscosity, etc.

e.g. Hopkins+ 10, Agertz+ 13, Wadsley+ 14

Low-mass galaxies are regulated by stellar feedback. Stellar feedback alone fails to regulate SF in massive galaxies.

AGN in clusters and galaxies

Nature's version

“That’s all well and good but I don’t see that in my simulations.”

- Anonymous

AGN balance radiative cooling in clusters

MS0735+74
NASA/ESA/CXC/STScI/NRAO/Birzan/M

PDS 456 Quasar winds

Nardini+2015 Science

10^{12} solar mass halo with a
former AGN?

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

BCGs, AGN, and star formation

CLASH clusters

AGN feedback is fueled by CGM

Multiphase threshold in the CGM

Voit+ 08, Cavagnolo+ 08, Rafferty+ 08

$$\text{Core Entropy Index} = K_0 = kTn_e^{-2/3}$$

Star Formation in BCGs

Donahue et al. 2015

CLASH rest-frame UV
50x50 kpc

Li et al. 2014

Simulated precipitation around
AGN in a BCG, 50x50 kpc

Two Kinds of Massive Ellipticals

Werner+ 12, Werner+ 14

Single-Phase

NCG 1399

Multiphase

NGC 5044

30 kpc

Quenching of Ellipticals

Voit+ 15 (ApJL)

Single-phase ellipticals: Supernova sweeping at > 1 kpc

Multiphase ellipticals: Precipitation-driven feedback at > 1 kpc

NGC 4261: 100x Bondi power boost from chaotic cold accretion

AGN Feedback Landscape

- AGN feedback is required to explain properties of massive systems.
- AGN feedback affects stellar fractions, metallicity, and the CGM/ICM scaling relations: cosmological models are still working on this.
- The mode of AGN feedback affects the answer: “thermal” feedback differs from “jets”.