Dream Chaser for Research in LEO

Cargo Module
Launch System

Uncrewed Dream Chaser Vehicle

The Best Commercial Payload Services Solution in the World

Capable: 5,500kg upmass, both pressurized & unpressurized
Safe: Gentle reentry, runway landing, all non-toxic propulsion
Responsive: Both runway return with immediate post-land access & cargo disposal on every mission
Affordable: Highly (90%) reusable (15x), broad commercial services
Flexible: Cargo Disposal + runway return, both docking & berthing,
Mature: Leverages 40+ years of Shuttle/X-plane experience
SNC’s Lifting Body: SAFER By Design

Dream Chaser

<table>
<thead>
<tr>
<th>Feature</th>
<th>Capsules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-g reentry (less than 1.5)</td>
<td>• High-g reentry (Soyuz nominal 4 g, emergency descent 11–15 g)</td>
</tr>
</tbody>
</table>
| Runway landing (standard aircraft commercial runway >7,200 ft.) | • High speed parachute deployment
• Water or land landing with recovery operations |
| Reusable with minimal processing (15+ missions per vehicle) | • Limited reusability with impact loads
• Salt water corrosion
• Higher reentry heat
• No prior capsule has been reused |
| No solid rocket motors or hazardous fuels | • Hazardous fuels |
| Atmospheric flight capability provides large cross range for landings (>1,000 nmi) | • Limited atmospheric flight or cross-range capability |
| Can abort to runway landing at any time from launch to orbit | • High abort loads
• Water landing required
• Delayed crew recovery
• Potential rough sea recovery |

The Dream Chaser Advantage: Providing the Capability to Address the Broader LEO Market
Expand Upon the NASA CRS2 Base

- Objective: Build-upon the Dream Chaser Cargo System CRS2 Baseline and Extend Mission & Market Capture Using this Funded System Capability and Customer-Driven Variants
Multiple Missions, Markets & Clients

- Dream Chaser Reusable Space Utility Vehicle (SUV) Enables Missions & Markets
- A Common SUV Platform Enables Multi-Mission Capability, Flexibility, Affordability
- 4 Market Types (Existing, Growth, Future, NextGen) and 9 Mission Markets are Planned

<table>
<thead>
<tr>
<th>Market</th>
<th>NASA</th>
<th>Interagency</th>
<th>International</th>
<th>Industry</th>
<th>Institutions/Academia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) ISS Cargo</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Free Flight and Science Missions</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3) Technology Testbed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4) Interagency</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) On-Orbit Servicing, Assembly, Repair</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Commercial Platforms/Services</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Remote Sensing</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) LEO Support for Space Exploration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) ISS Crew, Tourism</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing Markets</th>
<th>Growth Markets</th>
<th>Future Markets</th>
<th>Next Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) ISS Cargo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Free Flight</td>
<td>3) Technology</td>
<td>4) Interagency</td>
<td>5) On-Orbit</td>
</tr>
<tr>
<td>and Science</td>
<td>Testbed</td>
<td></td>
<td>Servicing,</td>
</tr>
<tr>
<td>Missions</td>
<td></td>
<td></td>
<td>Assembly,</td>
</tr>
<tr>
<td>3) Technology</td>
<td>4) Interagency</td>
<td>5) On-Orbit</td>
<td>Repair</td>
</tr>
<tr>
<td>Testbed</td>
<td></td>
<td>6) Commercial</td>
<td></td>
</tr>
<tr>
<td>4) Interagency</td>
<td></td>
<td>Platforms/Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7) Remote Sensing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8) LEO Support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Space Exploration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9) ISS Crew & Tourism</td>
<td></td>
</tr>
</tbody>
</table>
DCCS Assures Access to the ISS with Multiple Launch Options

- Fault-tolerant folded wing design allows the Dream Chaser to fit inside Atlas/Ariane standard 5 meter fairings
- Compatible with multiple launch vehicles/ground systems
 - Atlas V
 - Falcon 9 Heavy
 - European Ariane 5/6
 - Japanese H-III
- Responsive cargo access and designed for multiple mission reusability exceeding the life requirements for ISS
Unique Features of DCCS Provide Operational & Research Benefits

- Gentle 1.5g re-entry and runway landing protects sensitive payloads
- Immediate post-landing access to critical science (< 3 hour handover)
- Non-toxic/non-hypergolic fluids support late cargo loading and accelerated access to science post-launch, immediately post-landing
- Only vehicle optimized for responsive return of sensitive microgravity, biology, space & life science payloads → Live mice up/down!
ORBITEC & SNC: Delivering Enabling R&D Capability

Provide value-oriented ECLS/TCS solutions
- Full subsystems for permanent habitation in Space
- Commercial Crew subsystems and systems
- Full Human Flight development, verification and testing

Flight Navigation lighting
- Commercial Crew opportunities
- Special military applications

Environmental Control, Accommodations, and Systems for Science
- ISS flight systems
 - Proven flight plant systems NASA and International customers
 - Developing advanced plant habitat systems with NASA
 - Rodent flight systems for science in microgravity

Instrumentation and Control Systems
- Commercial and flight control systems
 - Integrating controls at the subsystems and system level
 - Instrumentation and Controls for integrated systems
 - Instrumentation for commercial products

Sierra Nevada Corporation Proprietary—Use or disclosure of data contained on this sheet is subject to the restrictions on title page.
Dream Chaser Multi-Mission Solutions
Customer-Defined Research Missions in LEO

Designed for Science Missions

- Selection of:
 - Launch Vehicle
 - Desired Landing Site
 - Orbit and Inclination
 - Mission Duration
 - Standard or Customized Hardware
 - Crewed, Uncrewed, or Tele-operational
- Frequent Flight and Re-Flight Opportunities
- Expedited and Cooperative Payload Integration
- Flexible Operating Requirements and Environments
- IP Control
• **Powered payloads**
 – Single and double lockers
 – Requires power, cmd/data, thermal services

• **Conditioned passive cargo in Double Cold Bags**
 – Access time requirements

• **Passive cargo**
 – 7 standard bag sizes
 – Conformal bags

Pressurized Cargo: 5,000kg Max

1 CTBE = 1.87 ft³
(Cargo Transfer Bag Equivalent)
Unpressurized Cargo: 1,500kg Max

- Requires power, command/data, thermal services
- Flight Releasable Attachment Mechanism (FRAM)-based cargo
- Direct Mount
 - Japanese Experiment Module Exposure Facility (JEM-EF) cargo
 - Other cargo
<table>
<thead>
<tr>
<th>Working in Space</th>
<th>Extended Duration (ED) Science—Space Discovery</th>
<th>Long Duration (LD) Science—Space Observation</th>
<th>Next-Generation Space Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission: Satellite servicing, deployment, refueling, retrieval, and deorbit/debris removal</td>
<td>Mission: Microgravity laboratory for in situ science & technology investigation</td>
<td>Mission: Direct Earth or space observation missions from LEO</td>
<td>Mission: Deep Space Exploration support missions from LEO</td>
</tr>
<tr>
<td>Duration: 1–10 days</td>
<td>Duration: Up to 28 days</td>
<td>Duration: Up to 1 year</td>
<td>Duration: Flexible</td>
</tr>
<tr>
<td>Configuration: Crewed Dream Chaser modified to meet unique mission needs (e.g., robotic arms, airlock, satellite deployment capabilities)</td>
<td>Configuration: Extended-duration Cargo vehicle modified to support internal science for up to 3 weeks and return</td>
<td>Configuration: Long-duration uncrewed Cargo Vehicle modified to support Earth observation, space, and astronomical missions for up to 1 year and return</td>
<td>Configuration: Dream Chaser Cargo or Crewed Vehicle modified to support Beyond LEO exploration missions (outfitting, test, sample curation) and return</td>
</tr>
</tbody>
</table>
Dream Chaser: Dare to Dream – It’s Your World!

www.SNCspace.com

Thank you!
NASA CRS2 Provides Flight Options

Program
- Commercial Resupply Services (CRS2)
 - Resupply cargo mission(s) to the International Space Station (ISS)
 - $14 billion contract award, Jan 2016
 - Flight rate: 4 to 5 missions per year
 - Budget – $1.0B-$1.4B per year for 2 or 3 potential providers

Customer
- NASA Johnson Space Center (JSC)
 - Competitive procurement
 - Multiple awards
 - Minimum of 6 flights guaranteed
- Award Date: Jan 2016
- Missions: 2019 - 2024

<table>
<thead>
<tr>
<th>Capability</th>
<th>Per Flight Range (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurized Upmass Delivery</td>
<td>2500-5000</td>
</tr>
<tr>
<td>Pressurized Downmass Return</td>
<td>2500-5000</td>
</tr>
<tr>
<td>Pressurized Downmass Disposal</td>
<td>2500-5000</td>
</tr>
<tr>
<td>Accelerated Pressurized Downmass Return</td>
<td>Subset of 2500-5000</td>
</tr>
<tr>
<td>Unpressurized Upmass and Disposal</td>
<td>500-1500</td>
</tr>
</tbody>
</table>

CRS2 Only Uses 6 Flts of the 30+ Flt Dream Chaser Capability with 2 Airframes, thus leaving 24+ Flts available in 10 yrs (2020-2030)