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Figure 3 The Great Seal of LSAPT issued during Apollo 16 and used as a pass to
the LRL. Persons shown are approved, overfed PI; poor, hungry, pleading unapproved
scientist; and the LSAPT goddess doing late distribution of Apollo 15 samples of only
one type (which investigators did not request). Jim Lovell and Tony Calio are holding
up LSAPT, the cherubs are Paul W. Gast and G.J. Wasserburg. Created by John A.
Wood during his term as deputy director (under commission to the LSAPT) using the
government-supplied presentation pad, magic marker, and rubber cement in the leaky

LSAPT in ~1973
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“The most important instruments for any sample return
mission are the ones in the laboratories on Earth”
— 2010 Planetary Science Decadal Survey

Beginning with Apollo, NASA has built a powerful and
diverse capability for analysis of extraterrestrial
materials. That capability plays a vital role in motivating

and enabling future missions

But that is a capability that must be nurtured to
maintain both infrastructure and expertise. Once lost,
it will be very expensive in time and money to recover
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Advantages of sample return

Study samples for decades with high-

cadence, adaptive, repeatable
measurements on samples in the
laboratory

Analyze planetary, interstellar and
circumstellar materials with
instruments that cannot be
flown in space

Take advantage of advances in
analytical capabilities (e.g.,
nanoSIMS, CHILI, nanoFTIR, ...),

that were not imagined at the
time of launch

Sets stage for new questions to be
addressed by new missions

Cameca nanoSIMS + Scottdd
NASA/ISC

Isotopic
Composition
at 27nm scale
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Antarctic Meteorite Collection

In the 37 US expeditions since
1977, 20,700 meteorites have
been collected.

>10,000 publications have
resulted from research on
ANSMET specimens, including
papers, abstracts, books,
dissertations, etc.

Currently, around 100
proposals for sample loans are
received annually.

Currently, around 700-800
specimens (subsamples of
meteorites) are prepared and

loaned to investigators annually.

35 Seasons of U.S.
Antarctic Meteorites

A Pictorial Guide To The Collection

Kevin Righter, Catherine M. Corrigan, Timothy ). McCoy and Ralph P. Harvey
Editors




Discovery of oxygen isotope anomalies

A Component of Primitive Nuclear Composition in
Carbonaceous Meteorites

Abstract. The oxygen of anhydrous, high-temperature minerals i
ceous meteorites is strongly depleted in the heavy stable isotope
180, The effect is the result of nuclear rather than chemical processes ar
results from the admixture of a component of almost pure 0. This
may predate the solar system and may represent interstellar dust with
history of nucleosynthesis.

Clayton, Grossman, Mayeda, 1973
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Genesis: Solar wind collection at L1




New map of solar system oxygen isotope compositions
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Progress in viewing comets
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Iris and Jupiter

Required coordinated analysis by:

keystoning sample prep
petrographic microscopy
synchrotron XRF
synchrotron XANES
synchrotron XRD
ultramicrotomy
analytical TEM

FIB

ion microprobe

Analysis of the smallest particles tells us about the
largest objects in the solar system

... and >90% of the particle is still
pristine for future generations

EDITORS'CHOICE

SCi en Ce ASTRONOMY

In 2004, NASA's Stardust mission flew by comet Wild 2 and retrieved particles

from the comet's coma, the tail of dust and gas that forms when a comet

approaches the Sun. Two years later, those particles were brought to Earth

and analyzed by international teams of scientists. Ogliore ef al describe

mineralogical and isotope data for a fragment from the Stardust collection.

This fragment, named Iris, resembles chondrules, the type of round, once-

molten silicate particles typically found in meteorites. Iris probably formed

in the inner solar nebula, and thus its presence in the coma of comet Wild

2 is a testament to the transport of particles from the inner, hotter parts

of the solar nebula to the outer, colder ones, where comets originate. Iris

formed at least 3 million years after the formation of the earliest solids in

the solar system. Transport of material across the solar system must have oc-

curred before Jupiter formed, as its growing embryo would have opened a gap

in the protoplanetary disk, preventing outward transport past its orbit. Thus,

unless transport occurred outside the plane of the protoplanetary disk or Jupiter

was interior to Iris when this particle formed, the results imply that Jupiter formed 3
million years after the formation of the earliest solids. — MJC

Astrophys. ] 745, 119 (2012).




Where would Dawn'’s exploration
of Vesta be without laboratory
investigations of HED meteorites?




Where would our
“understanding

of Mars geology and
geochemistry —

be without Martlark.-vﬁ‘
meteorites?
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www.physicst@day.org

‘ _' S CS A publication of the American Institute of Physics
i

October 2014 volume 67, number 10

Cosmic dust catcher

also:

Nanotube templates <«

Atom-like crystal defects «

Theorists and the developing world <



Progress in viewing interstellar dust
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PSD Science goals

|. Explore and observe the objects in the solar system to understand
how they formed and evolve.

2. Advance the understanding of how the chemical and physical
processes in our solar system operate, interact and evolve.

3. Explore and find locations where life could have existed or could exist
today.

4. Improve our understanding of the origin and evolution of life on Earth
to guide our search for life elsewhere.

5. ldentify and characterize objects in the solar system that pose threats
to Earth, or offer resources for human exploration.



PSD top-
level

candidate
mission

science

goal laboratory capabilities

science
goal

mineralogy and petrology,

Laborator
J geochemical analysis,

analysis of _ ) : -
1.2.4.5 ~50g of NF Osiris-ReX radiogenic and high-precision
et asteroidal stable isotopic composition and
lith mapping, organic compound
regoli analysis, magnetism
Laboratory mineralogy and petrology,
analysis of NF comet geochemical analysis,
1,2,4,5 ~5009 of surface sample radiogenic and stable isotopic
cometary return composition and mapping,

material organic compound analysis

mineralogy and petrology,
geochemical analysis,
radiogenic and stable isotopic
composition and mapping,
organic compound analysis

\ETERCE o5 Mars sample
return return*

. precision of age measurements
CUEWETERO R NF Lunar South  to better than +20 million years

[IHEIFTIETE  Pole- Aitken  and accuracy of trace elemental
samples Basin compositions to the parts-per-
billion level
Search for NF/Flagship in situ organics analysis
life at Enceladus supported by laboratory

analysis, e.g., high-sensitivity

orbiter/lander microfluidics capability

Enceladus

*Space-X DragonLab enabled?

supporting
sample
collections

Antarctic meteorites,
Interplanetary dust,
Hayabusa

Interplanetary dust,

Stardust cometary

samples, primitive
meteorites

SNC meteorites

Lunar samples
(Apollo, Luna, lunar
meteorites)

carbonaceous
chondrites, terrestrial
analogs (e.g.,
Atacama)

laboratory
capabilities for
mission
planning and
ops

collector design and
ops, target selection,
planetary protection,
contamination control

collector design and
ops, target selection,
planetary protection,
contamination control

collector design and
ops, target selection,
planetary protection,
contamination control

collector design and
ops, target selection,
contamination control

quantitative organics
analysis (mass
spectra, enantiomeric
excess)

laboratory
capabilities for
mission
completion

microanalysis, small
particle handling and
sample preparation,
contamination
control,magnetism
long-term curation

microanalysis, small
particle handling and
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The number of selected proposals for extraterrestrial material
research has decreased sharply in the last two years.

There is a common perception in the community that this is a
direct (but perhaps unintended) consequence of the HQ
decision to apply equal selection rates of 20% to all new
programes.

No matter the cause, this raises a concern about decreasing
support for analytical capabilities for extraterrestrial materials, in
an era in which increasing support is needed to meet NASA’s
strategic goals

Once NASA defines its strategic priorities, are there
tactical reasons for variable selection rates?
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Support of mission-critical assets:
* Expensive instruments
* Knowledgable and experienced laboratory scientists
* Support and training of the next generation of
scientists (students and post-docs)

Weakening support for US laboratories will force
increased reliance on international collaborators for
completion of missions.

International collaboration is
healthy, but reliance on non-US
laboratories is risky

Rainer Wieler Veronika Heber  Ansgar Grimberg
ETH, Zurich ETH, Zurich ETH, Zurich
(Currently,
Physikalisches
Institut, Bern)
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In a zero sum game, what is the cost of supporting extraterrestrial
materials research? What other mission critical infrastructure is at
risk given reorganization and budget cuts?

The idea of proposals is to allow the community to weigh those
questions on the fly. Why shouldn’t this be the mechanism
used to make decisions!

Review panels think tactically, not strategically. They
have a stack of proposals to evaluate, and do not have
the big picture.

Systematic cross-calibration may be difficult between
sub-panels in broad programs like EW or SSW
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for Planetary Science and the Planetary Science Division
Science Goals, as articulated in the 2014 NASA Science Plan?

Yes, in principle.

No, in practice? Low selection numbers are a red
flag to CAPTEM

PSD should prioritize its critical needs and not

necessarily be tied to equal selection rates for the
various defined programs
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The current R&A structure as currently implemented may put at risk:

(I) A knowledge base that allows NASA and the scientific community to
explore new frontiers in research and to identify, define, and design cost-
effective space and Earth science missions

Low selection rates weaken astromaterial research, which
motivates and enables nhew missions

(2) A wide range of technologies that enable NASA and the scientific
community to equip and conduct spaceflight missions

“The most important instruments for any sample return

mission are the ones in the laboratories on Earth” —
2010 Decadal

(3) A robust, experienced technical workforce to plan, develop, conduct,
and utilize the scientific missions

Low selection rates may drive knowledgable, experienced US
scientists out of the field, fail to nurture the next generation,
and leave NASA to rely on non-US scientists to complete
missions
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Selection rate for synchrotron beamlines varies
dramatically
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Selection rate for DOE mission-critical infrastructure over
review cycles: ~100%

Stanford Synchrotron Light Source
National Synchrotron Light Source Il



Selection rates for extraterrestrial material research:
2014: ~17 in Emerging Worlds and ~| | in Solar System Workings

2015: ~20 in Emerging Worlds and ~TBD in Solar System VWorkings

... from an historical average of 38-40 in Cosmochemistry and Origins




Leveraging

Advanced Light Source

The National Center for Electron
Microscopy (NCEM)

Isotopic

Composition
at 27nm scale

Rainer Wieler Veronika Heber  Ansgar Grimberg
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International collaborations and
laboratories

NASA investments

Non-NASA Launch
opportunities
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Astromaterials research and the search for
extraterrestrial life

Laboratory analyses are critical to confirming life
detection if made by in situ instruments™

Laboratory analytical capabilities include organics
analyses

Laboratory analyses are important to
understanding environments where life may exist

*Unless an alien poses for a picture, of course




Knowledge base and instrumental capability is
essential for mission design and implementation

* Collection medium design

* Target selection

* Post-recovery sample handling planning

» Contamination control, definition of withess coupons

* Analysis and long-term curation of spacecraft
materials



Knowledge base and instrumental capability is
essential for Mission Ops

e Site Selection
* Sample selection
e Contamination control

Gene Shoemaker and Apollo astronauts at Meteor Crater



Knowledge base and instrumental capability is
essential for post-recovery analysis

* Sample handling

e Sample preparation

* Coordinated microanalysis and interpretation

» Contamination control

* Long-term curation of samples, spacecraft components,
and witness coupons



CAPTEM R&A White Paper observations and recommendations




Observation: Because many of the missions in the next decade are not yet defined,
we can only offer a generalized list of astromaterials needs [to support] NASA
missions. These needs include expertise and instrumentation (especially micro-
analytical techniques) for mineralogical and petrological characterization,
geochemical (elemental) analysis, radiogenic and stable isotope measurements, and
organic compound analysis. Other techniques, such as magnetic measurements,
will also likely be required.

Recommendation: Identify (and update, as missions are selected) specific needs
for analytical measurements and ensure that a sufficient number of highly capable
laboratories are supported to meet projected mission requirements.

Observation: R&A reorganization during the first funding year has resulted in a
significant decrease in astromaterials research capabilities.

Recommendation: Examine how reorganization has resulted in redistribution of
effort, whether this change in the diversity of core components of planetary
exploration is desired or accidental, and whether the scores of astromaterials
proposals are systematically different from those in other areas.




Observation: Astromaterials research programs cannot be turned off and on
annually, because of the investments needed for instrument acquisition and
development and of the personnel training required for effective operation and
technical innovation.

Recommendation: Provide a mechanism to take into account the requirement for
sustained funding for high-performing laboratory facilities that are critical for
missions and other NASA goals.

Observation: Real innovation in astromaterials instrumentation comes from
individual Principal Investigators. Facilities instruments provide valuable
opportunities for many investigators, but NASA history indicates that such facilities
do not generally develop innovative instruments and applications.

Recommendation: In setting funding priorities, general-use facilities should not be
viewed as replacements for the laboratories of individual investigators who develop
innovative analytical technologies.




