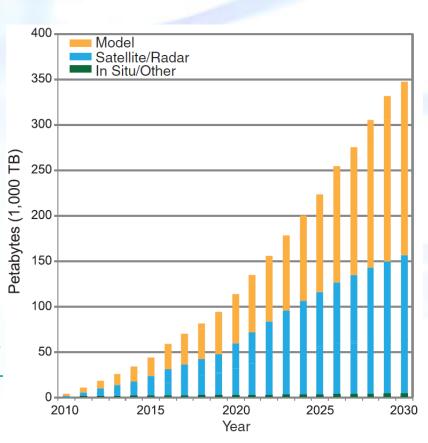


Challenges and Solutions for Future Modeling Data Analysis Systems

Tsengdar Lee – <u>tsengdar.j.lee@nasa.gov</u>

NASA Headquarters

Dan Duffy, NASA GSFC Seungwon Lee, JPL Rama Nemani, NASA ARC Duane Waliser, JPL Jia Zhang, CMU And Many Collaborators


NAS CESAS – October 4, 2016

Projected Data Holding

•By 2020 it is estimated that all climate data holdings, including simulation, observation, and reanalysis sources, will grow to hundreds of exabytes in a worldwide-federated network [CKD Workshop, 2011 and CCDC Workshop, 2011].

- CCDC Workshop, International Workshop on Climate Change Data Challenges, June 2011, <u>http://www.wikiprogress.org/index.php/Ev</u> ent:International Workshop on Climate Change_Data_Challenges.
- CKD Workshop, Climate Knowledge Discovery Workshop, March 2011, DKRZ, Hamburg, Germany, <u>https://redmine.dkrz.de/collaboration/proj</u> <u>ects/ckd-</u> workshop/wiki/CKD_2011_Hamburg.

 Climate Data Challenges in the 21st Century, Jonathan T. Overpeck, et al. Science 331, 700 (2011); DOI: 10.1126/science.1197869

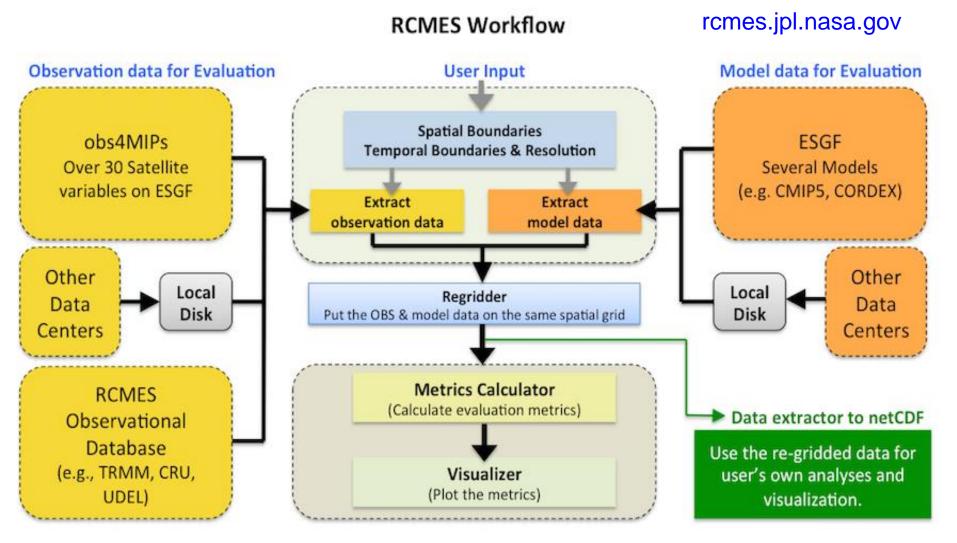


2016 NASA Modeling Analysis & Simulation Product Plan

Forward Processing System	Satellite-Era Reanalysis 1979 - Present	EOS-Era Reanalysis 2000 – Present	Nature Runs (OSSEs)	Seasonal Forecast System	Coupled Simulations (Decadal, CMIP6)
3D-Hybrid Ensemble-Var. (25km) 32 ensemble members Hydrostatic 1-Moment Cloud Microphysics Current GEOS-5 FP system	MERRA (50km) Ending Feb. 2016 3D-Var ~200 TB	M2R12K (12km) MERRA2 downscaled to 12 km Aerosols CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic 1-Moment Cloud Microphysics	G5NR (7km) Simulated 2005-2007 Aerosols, CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic 1-Moment Cloud Microphysics 4 PB	GEOS SFS (50km) MERRA-2 replay 50km, 40L ocean analysis 31 members per month Include aerosols, CO, CO ₂ M2-driven EnOI ocean analysis	GEOS CMIP (25km) 25km Atmosphere 25km 50L ocean Include aerosols
	MERRA-2 (50km) 3D-Var Aerosols and CO, SO ₂ , O ₃ 1-Moment Cloud Microphysics ~400 TB				greenhouse gases Hydrostatic 2-Moment Cloud Microphysics
3D-Hybrid Ensemble-Var (12km) 32 ensemble members Atmosphere, ocean surface Hydrostatic 2-Moment Cloud Microphysics Parallel FP stream in 1Q-2016 4D Ensemble-Var (9km) ~100 ensemble members Atmosphere, ocean surface Non-Hydrostatic 2-Moment Cloud Microphysics (The first GEOS-6 system) Parallel FP stream in 4Q-2016		IESA (12km) 3D-Hybrid Ensemble-Var 32 ensemble members atmosphere, land, ocean surface Aerosols, CO ₂ , CO, SO ₂ , O ₃ Non-Hydrostatic 2-Moment Cloud Microphysics 5,000 cores ; 40 simulation days/day 150 days total wallclock ~3 to 4 PB of data	G5NR-CHEM (12km) Simulated 2013-2014 Replay to M2R12K Full Reactive Chemistry Non-Hydrostatic 1-Moment Cloud Microphysics 1 PB of data 4Q-FY2016	Alignment with "MERRA-3" 25km, 50L ocean analysis System design under review FY2019 target System evaluation progress Will align with "MERRA-3" SFS	Planning/discussion and system evaluation in progress
	MERRA-2 GMI replay (50km) Replay GMI Chemistry 1 streams, 1,000 cores each 12 to 18 months				"MERRA-3" SFS and strategic direction o
	~ 1 PB Coupled Reanalysis ("MERRA-3") Atmosphere-land-ocean- crvosohere (alignment with SFS and CMIP6) FY2019 target	IESAR4K (4km) IESA Downscaled to 4km downscaling evaluation for NCA Aerosols, CO., CO, SO., O. Non-Hydrostatic 2-Moment Cloud Microphysics 5,000 cores ; 40 simulation days/day 150 days total wallclock ~3 to 4 PB of data	G6NR (3km) Simulated 2015 Aerosols CO ₂ , CO, SO ₂ , O ₃ , CH ₄ Non-Hydrostatic 2-Moment Cloud Microphysics ~4 PB Planning/evaluation	FY16 Projects	

Past Foci

- Challenges:
- Stewardship
- Curation
- Indexing
- Cataloging
- Searching
- Ordering
- Subsetting
- Provenance
- Lineage
- Data Mining
- Dissemination

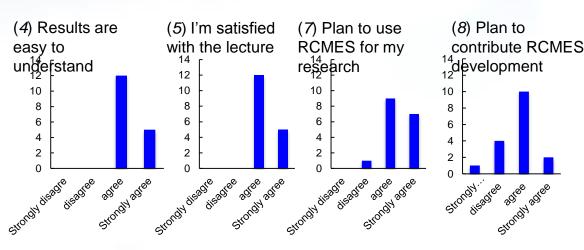

NASA

Gearing up for Climate Modeling Data Analytics

- Traditional data center focuses on data archive, access and distribution
 - Scientists typically order and download specific data sets to a local machine to perform analysis
 - With large amount of observational and modeling data, downloading to local machine is becoming inefficient
 - Data centers are starting to provide additional services for data analysis
- NASA computing and computational science program is building "data analytics platforms" using "Climate Analytics as a Service" (CAaaS) such as NASA Earth Exchange (NEX), Regional Climate Modeling Evaluation Systm (RCMES), Climate Model Diagnostic Analyzer (CMDA) and Observation for Model Intercomparison Project (Obs4MIPs) using Earth System Grid Federation (ESGF)
 - Build on technologies
 - Enabled by a rule based data management system
 - Current research focuses on how to manage data movement from the archives to the analytical platforms

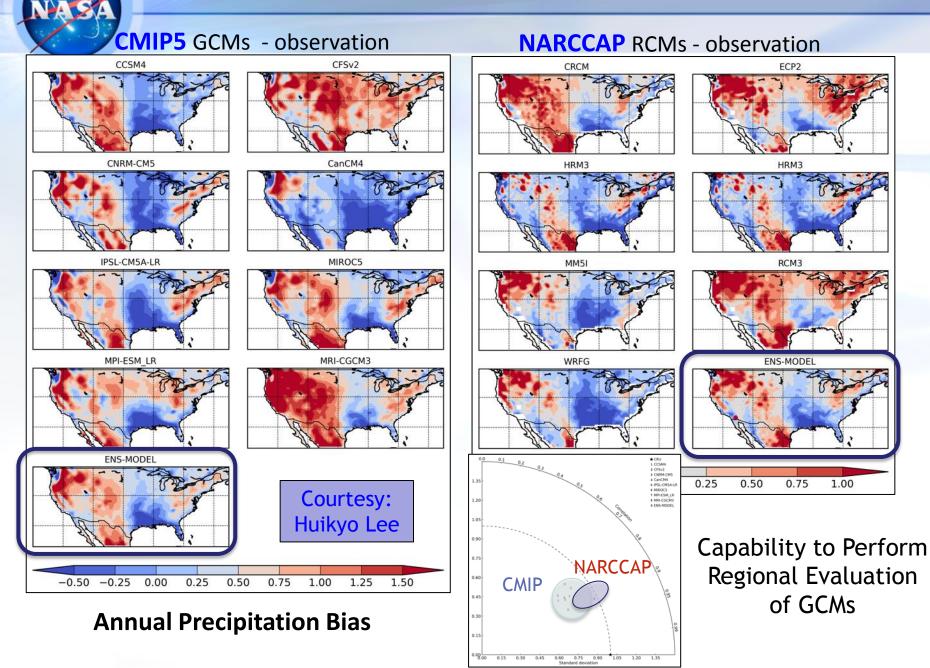
RCMES Architecture

Support – ARRA seed funding, NSF G8 ExArch Program, Mainly NASA NCA & Other

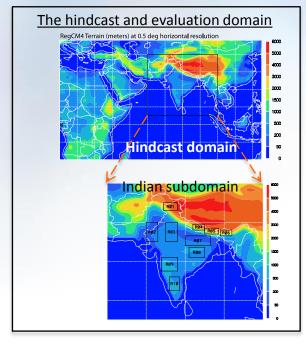

CORDEX-2016 Conference Stockholm University, Sweden May 19th Thursday, 2016

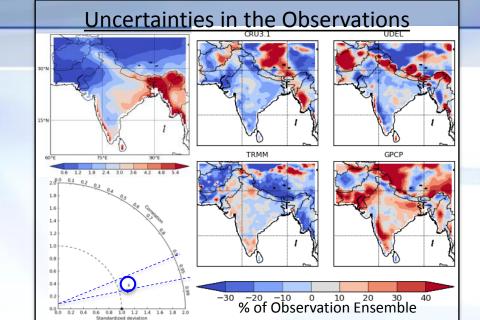
Attended by ~50 trainees from multiple countries, mostly in their early careers (students, postdocs, climate scientists, data scientists)

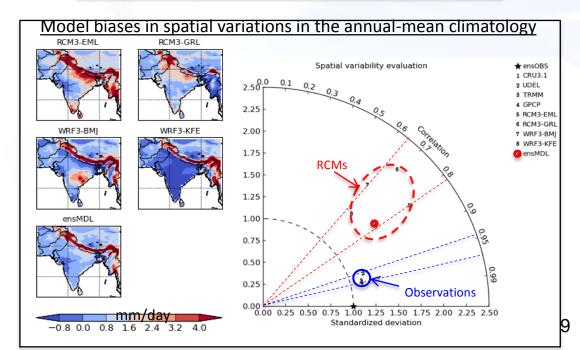
Among the 50 attendees, 20 responded to the survey. The responded attendees are: graduate students (7), postdocs (2), climate scientists (7), and data scientists (4).


A eight-question survey was handed out at the end of the session. Responses to key items are compiled in the below:

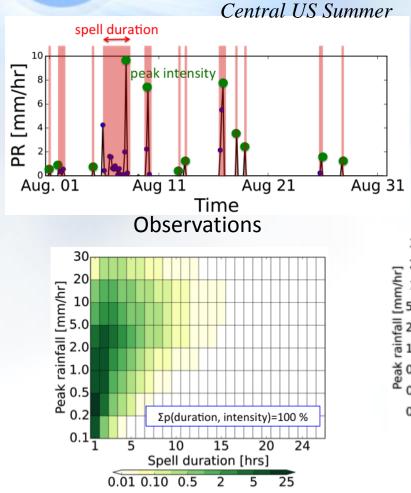
- 17/17 agrees that RCMES results are easy to understand
 - 17/17 were satisfied with the lecture
 - 16/17 plan to use RCMES in their research
 - 12/17 plan to contribute RCMES/OCW development

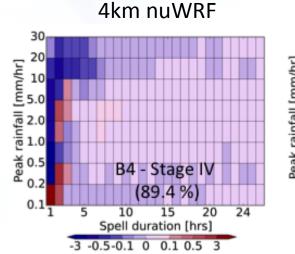


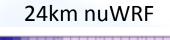

Direct Access to ESGF Available: Models & Observations

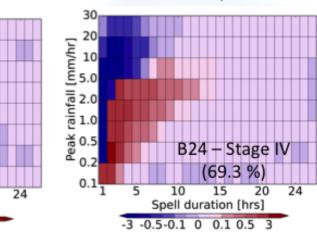


Precipitation Evaluation of Multi-model Hindcast in the CORDEX South Asia – Indian subcontinent


Kim, Sanjay Mattma, Boustani, Rao, Krishnan, Waliser, 2014, Uncertainties in Estimating Spatial and Interannual Variations in Precipitation Climatology in the India-Tibet Region from Multiple Gridded Precipitation Datasets, Int. J. Clim., Submitted.



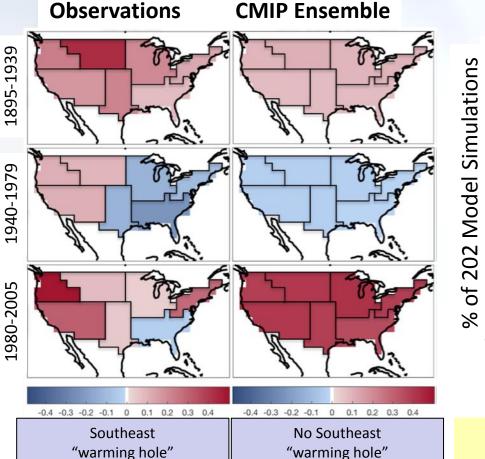

Precipitation Duration/Intensity Distributions

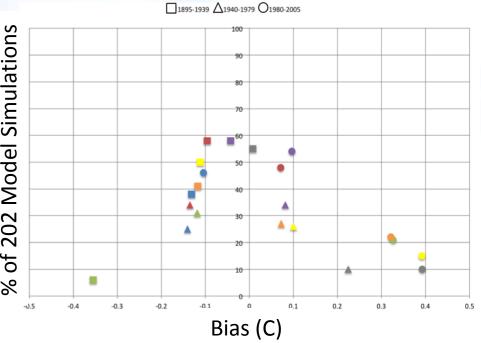

Reference : Stage IV 4km Gridded Observations

- From a model development as well as climate impacts assessment, the precipitation is important to represent correctly.
- Metrics are needed that limit data transfer or re-gridding needs.

- Higher resolution important for realistic precipitation extreme distributions
- Useful information can be obtained from native resolutions

Lee, Waliser, Braverman, 2016: In Prep




Regional Evaluation of the CMIP5 GCMs Ability to Reproduce Historical Surface Air Temperature and Precipitation Trends J. Lee, P. Loikith, K. Kunkel, H. Lee, D. Waliser

How well do CMIP5 models reproduce observed trends in precipitation and surface temperature (i.e. nClimDiv) over CONUS?

NCA-defined regional analysis

Paper development in progress Metrics incorporated into RCMES over Fall

11

NASA Earth Exchange (NEX)

OVERVIEW


+ NEX is virtual collaborative that brings scientists together in a knowledge-based social network and provides the necessary tools, computing power, and access to bigdata to accelerate research, innovation and provide transparency.

VISION

To provide "science as a service" to the Earth science community addressing global environmental challenges

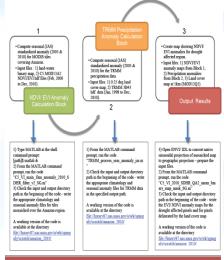
GOAL

To improve efficiency and expand the scope of NASA Earth science technology, research and applications programs

NEX Provides a Complete Work Environmentb "Science As A Service"

COLLABORATION

Over 400 Members


COMPUTING

Scalable Diverse Secure/Reliable

CENTRALIZED DATA REPOSITORY

Over 2300 TB of Data

KNOWLEDGE

Workflows Machine Images Model codes Re-useable software

NEX Resources

Portal

- Web server
- Database server
- 503 registered members (up from 420)

Sandbox

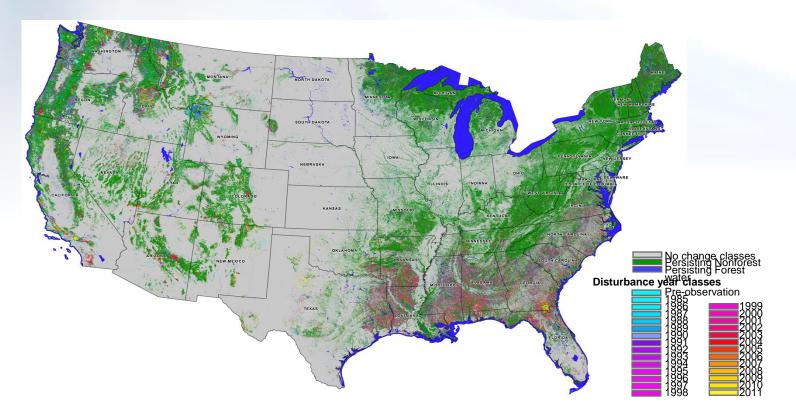
- 96-core server, 264GB memory, with 320 TB storage
- 48-core server, 128 GB, 163 TB storage

HPC

- 720-core dedicated queue + access to rest of Pleiades
- 181 users/44 active (153/40 last year)
- 2.3 PB storage (from 850TB)

Models/Tools/Workflows used by NEX User Community

- GEOS-5
- CESM
- WRF
- RegCM
- VIC
- BGC
- LPJ
- TOPS
- BEAMS
- Fmask
- LEDAPS
- METRIC
- ...


Data (>2 PB on & near-line)

- Landsat
- MODIS
- TRMM
- GRACE
- ICESAT
- CMIP5
- NCEP
- MERRA
- NARR
- PRISM
- DAYMET
- NAIP
- Digital Globe
- NEX-DCP30
- NEX-GDDP
- LOCA
- BCCA
- WELD
- NAFD-NEX

Long-term Satellite Data Analysis Rates of Disturbance (LANDSAT)

Forest disturbance tracking with Landsat with implications for carbon cycle modeling

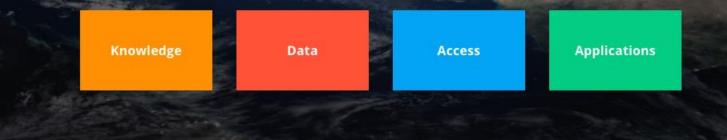
High Resolution Climate Projections

Climate Downscaling

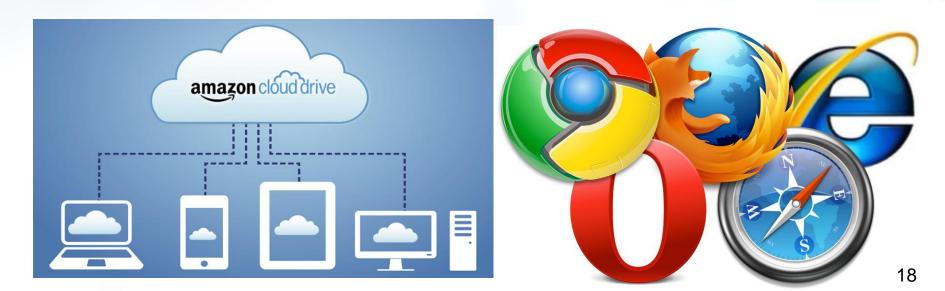
DCP30 (Downscaled Climate Projections at 30arc sec) Domain/Resolution: CONUS, ~800m Frequency: Monthly Variables: Tmax, Tmin, and Precip No of CMIP5 models: **34** Baseline Data: Daly et al., 2002 Funding: NASA

BCCA (Bias Corrected Constructed Analogs) Domain/Resolution: CONUS, ~12km Frequency: Monthly Variables: Tmax, Tmin, Precip No of CMIP5 models: 21 Baseline Data: Maurer et al. 2002 Funding: USBR

LOCA (Localized constructed analogs) Domain/Resolution: CONUS, ~6km Frequency: Daily Variables: Tmax, Tmin, Precip; Humidity, Windspeed (in progress) No of CMIP5 models: 32 Baseline Data: Livneh et al. 2013 Funding: USBR/CalEnergy


GDDP (Global Daily Downscaled Climate Projections) Domain/Resolution: Global, ~25km Frequency: Daily Variables: Tmax, Tmin, and Precip No of CMIP5 models: 21 Baseline Data: Sheffield et al. 2006 Funding: NASA

Community Engagement


Discovery, Access and Analysis of NASA Earth Exchange Data in support of the **National Climate Assessment**

Climate Model Diagnostic Analyzer

- Web-based tools running on Amazon cloud.
- Only requirement from a user machine is a web browser with an internet connection. No local installation needed.
- Provides datasets and analysis services.
- You can analyze the datasets using the services.
- You can download analyzed output datasets.
- You can download original input datasets.

Major Challenges Over Next 10 Years and What Can We Do Now

- Modeling and observational data will continue to grow exponentially
 - Major challenge in modeling data management, analysis, and collaboration
 - Tape archives will not meet these challenges
 - Network will not catch up
 - Library model will no longer work
 - Explore and adopt new storage technologies (e.g., object storage)
 - Build centralized data analytics systems
 - Data proximal analytic capabilities (move the analytics to the data)
 - Commoditize data storage and data analytics
- Large scale science informatics system will be needed to solve the future data challenbges