
Additive Manufacturing Overview

National Academies of Aeronautics
and Space Engineering Board

October,13 2016
Aerojet Rocketdyne

ABOUT AEROJET ROCKETDYNE

Aerojet Rocketdyne is a world-recognized aerospace and defense leader providing propulsion and energetics to the space, missile defense and strategic systems, tactical systems and armaments areas, in support of domestic and international markets.

Heritage of Powering Virtually All US Space Exploration

Redstone	Jupiter	Atlas	Saturn	Saturn	Titan	Space	Delta	Atlas	Delta
Navaho	Thor	I/II/III	I/1B	V	I/II/III/IV	Shuttle	I/II/III	V	IV

Additive Manufacturing History

Additive Manufacturing Value Proposition

Value to Enterprise

Additive Manufacturing (AM) Application Opportunities

- AM is simply a new manufacturing “tool”
- Selective use must be applied:

- Consolidation of complex assemblies
- Elimination of long lead forgings
- Reduction of touch labor
- Reduction of weld and braze joints
- Opens up new design space

RL10 Main Injector
SLM Printed

RL10 Sheet Metal +
Welded Inlets *now SLM*

- Early example of F1A Preburner Injector (2009)

AM

- Cost savings: 70%, Lead time: 60%, Weight: 9-lbs (4-kg), Parts 14:2

Early Demonstration of Potential Benefits

Aerospace Additive Manufacturing Requires Integrated Development

AM is Complex and Interconnected

- Machine operation, alloy, properties and component function are interconnected
- AM development for high-performance applications must address all in parallel

Aerospace Requires Precision

- Materials fully characterized
- Functional performance and variation understood
- Stringent quality control and part acceptance requirements

AM is not “turn key”- Rigorous development is required for successful adoption

Development Approach for AM

Enterprise Additive Manufacturing Team (AMT)

Parameters & Specifications

Process Control
Source Approvals

Material Testing Design Curves

New Product Form
Design Allowables

Process Limits Design Options NDT

Standard Work
New Capabilities

Component Validation

Key Challenges in AM Component Development

- Printing aerospace quality parts requires refinement of these:
 - Powder
 - *Chemistry, particle size, etc.*
 - Parameters
 - *Optimized from OEM parameters*
 - Properties
 - *For AM product*
- Complex part designs pose inspection challenges
 - Now ... powder-to-part approach

RL10 Main Injector CT image

Process Optimization, Design / Features, and Inspections Can Pose Challenges for AM

Additive Manufacturing Qualification

Air Force SMC Booster Propulsion Tech Mat Program

Can make these today...

Complex internal geometry

This process will improve confidence in part quality

Process Sensitivity

Process Data Collection

NDE Inspections

Statistical Defect Survey

Methodology Documentation and Component Demonstration

AM Qualification Methodology

Developing new methodology to qualify AM parts with improved confidence in quality

Additive Manufacturing Qualification

Air Force SMC Booster Propulsion Tech Mat Program

**AEROJET
ROCKETDYNE**

Classify the types of SLM
M200 defects and the
processing conditions
when they occur

Demonstrate the ability to detect these processing conditions using process data

Validation Data

Simple Geometry ➤ Complex Geometry

- *Metallography*
- *NDE Data (CT/X-ray)*
- *Material Properties*
- *Functional Testing*

Complex interaction of in-process data to correlate with “defective” or “good” volumetric quality

AM Breakthrough Projections

Advanced Process Monitoring

Industry Standards

Design for AM/Topology Optimization

Higher Production Rates

Material Property Database

Customized Microstructure

Hybrid AM Processes

Consolidated OEM base

All AM System (Printed)

Projected Breakthroughs Based on Recent Trends and Experience

Agency / Industry Cooperation Opportunities

- **Establish standards**
 - Powder for types of AM
 - Processing requirements
 - Develop material properties database
- **Enable rapid qualification of AM designs**
 - Test Bed needed to validate AM part designs
 - Develop *and accept* process monitoring
- **Advanced alloys**
 - Develop new materials enabled through AM
 - Agency computing resources combined with industry metallurgy knowledge

NASA-MSFC

Joint AM Efforts Will Accelerate Acceptance of Technology and Open New Opportunities

Summary

- AM is a new tool to develop and apply properly
- Challenges to ensure aerospace quality material
- Complex part designs also open up inspection challenges
- Agency / Industry collaboration could enable accelerated AM insertion and adoption
- Aerojet Rocketdyne lessons learned being applied to AM applications

Additive Manufacturing Offers Tremendous Potential, But Must be Applied Properly

BACKUP

Alloy and Powder Requirements

- **“SLM-weldable” Alloy**
 - severe weld cracking in certain alloys
 - sensitive to composition variations
- **Powder Shape, Size, and Distribution**
 - consistent spreading
 - uniform, sufficient packing
- **Viable Post-processing Heat Treatment**
 - example: Ti-6Al-4V; α - β phase field enables heat treat for wrought-like structures and properties

Uniform, Spherical Powder Improves Flow

SLM Superalloy Weld Crack; (≤ 1 layer)

AM Ti-6Al-4V wrought-like structure after HIP

Process considerations follow from welding, but with extreme cooling rate and size

SLM Parameter Requirements

- **Optimum SLM Parameters Provide**
 - Shape definition
 - Dense structure
 - Avoidance of “build faults”

Part Layer Damaged
by Recoater

Vertical Crack Propagated
by Thermal Strain

SLM Parameters Optimized for Geometry Precision

Optimum

Non-optimum

SLM Parameters Optimized for High Density

Subtle part geometry changes can have significant impact

AM High-Performance Component Design Requires AM Properties Data

- Alloy and Environment Design Database Testing:
 - tensile
 - fatigue
 - creep
 - fracture toughness
 - Air / LN₂ / GH₂

New product form being fully characterized for design capability

Influences on Part Characteristics

Wide Range of Considerations Impact AM Component Capability