

Astrophysics

Large Strategic Missions

Committee on Strategic Science Missions

National Academies' Keck Center
Washington, DC

October 5, 2016

Paul Hertz
Director, Astrophysics Division
Science Mission Directorate
[@PHertzNASA](https://twitter.com/PHertzNASA)

Why Astrophysics?

Astrophysics is humankind's scientific endeavor to understand the universe and our place in it.

1. How did our universe begin and evolve?

2. How did galaxies, stars, and planets come to be?

3. Are We Alone?

These national strategic drivers are enduring

1972

1982

1991

2001

2010

Astrophysics Mission Portfolio 2016

- Pre-Formulation
- Formulation
- Development
- Operating

Astrophysics Mission Portfolio 2016

Large Strategic NASA-led Mission

Medium Strategic NASA-led Mission

No Small Strategic NASA-led
Missions in Astrophysics

Astrophysics Mission Portfolio 2016

Medium PI-led Mission

Small PI-led Mission

No Large PI-led
Missions in Astrophysics

Astrophysics Mission Portfolio 2016

PI-led Non-NASA Mission

Strategic Non-NASA Mission

ASTRO-H was PI-led
Recovery Mission will be Strategic

OPTICAL

Hubble Space Telescope

UV

MACS J0416.1-2403

MACS J0416.1-2403

MACS J0152.5-2852

MACS J0152.5-2852

Hubble probes the halo of the Andromeda Galaxy

MACS J0717.5+37.45

MACS J0717.5+37.45

Hubble Space Telescope: Refereed Science Publications

Number of Refereed Papers per Year

Chandra X-ray Observatory

Chandra X-ray Observatory

Spitzer Space Telescope Senior Review Proposal

January 22, 2016

J. Stauffer, L. Storrie-Lombardi,
M. Werner, L. Armus, S. Carey,
S. Dodd, G. Helou, T. Soifer

Spitzer Space Telescope

■ Research & Technology ■ Missions in Development
■ Missions in Operation ■ Infrastructure & Other

FY 2016
Total US\$ 1,333 M

Missions in Development

includes Webb, ISS-NICER, ISS-CREAM, TESS, Euclid, WFIRST

Missions in Operation includes Hubble, Chandra, XMM-Newton, Spitzer, Swift, Fermi, Kepler, NuSTAR, SOFIA, LISA Pathfinder

Infrastructure & Other includes data archives, suborbital balloons, ground-based telescopes, management

Research & Technology

includes basic technology, strategic technology, suborbital payloads, theory, data analysis, fellowships

Astrophysics Missions in Development

ISS-NICER

2/2017

NASA Mission

Neutron Star Interior
Composition Explorer

ISS-CREAM

6/2017

NASA Mission

Cosmic Ray Energetics
And Mass

TESS

12/ 2017

NASA Mission

Transiting Exoplanet
Survey Satellite

Webb

10/2018

NASA Mission

James Webb
Space Telescope

Euclid

ESA-led Mission

2020

NASA is supplying the NISP
Sensor Chip System (SCS)

WFIRST

Mid 2020s

NASA Mission

Wide-Field Infrared
Survey Telescope

James Webb Space Telescope

<http://jwst.nasa.gov/>

Large Infrared Space Observatory

Top priority of 2000 Decadal Survey

Science themes: First Light; Assembly of Galaxies; Birth of Stars and Planetary Systems; Planetary Systems and the Origins of Life

Mission: 6.5m deployable, segmented telescope at L2, passively cooled to <50K behind a large, deployable sunshield

Instruments: Near IR Camera, Near IR Spectrograph, Mid IR Instrument, Near IR Imager and Slitless Spectrograph

Operations: 2018 launch for a 5-year prime mission

Partners: ESA, CSA

JWST remains on track for an October 2018 launch

Dark Energy

Microlensing

Exoplanets

Coronagraph

Astrophysics

Astrophysics Budget by Project

FY05-FY14 Actual, FY15 Op Plan, FY16-FY20 Request

Astrophysics Budget by Function

FY05-FY14 Actual, FY15 Op Plan, FY16-FY20 Request

Fraction of budget on Large Observatories

Astrophysics Mission Timeline

Updated October 2015

Does not include missions in formulation or pre-formulation

US-led strategic missions

→ Large strategic mission

→ Medium strategic mission

Note: All US-led large strategic missions launched since 1990 are still operating

Current Strategic Missions

NASA-led (launch year)	Development Cost Phases C-D (\$M)	FY16 Operating Cost (\$M)
Hubble Space Telescope (1990)	\$1,526.2 M	\$ 98.3 M
Chandra X-ray Observatory (1999)	\$1,514.0 M	\$ 59.8 M
Spitzer Space Telescope	\$707.0 M	\$ 15.2 M
Fermi Gamma-ray Space Telescope	\$418.8 M	\$ 15.9 M
SOFIA (2014)	\$1,048.9 M	\$ 83.6 M
James Webb Space Telescope (2018)	\$6,188.8 M	N/A
WFIRST (mid-2020s)	\$2,363.9 M	N/A
Not NASA-led (lead agency) (launch year)		
XMM-Newton (ESA) (1999)	\$28.3 M	\$ 2.9 M
LISA Pathfinder (ESA) (2016)	\$82.8 M	\$1.2 M
Euclid (ESA) (2020)	\$117.7 M	N/A
X-ray Recovery Mission (JAXA)	Under discussion	N/A
Athena (ESA)	Under discussion	N/A
L3 Gravitational Wave Observatory (ESA)	Under discussion	N/A

Current Mission Sizes

- Small missions are PI-led, AO selected through the Astrophysics Explorers Program
 - Small Complete Missions of Opportunity (SCM MO): AO cost cap \$75M
 - Small Explorers (SME): PI-managed cost cap \$125M; LCC \$250M
 - Medium Explorers (MIDEX): PI-managed cost cap \$250M; LCC \$400M
- Medium missions (also called Astrophysics Probes) are strategic missions recommended by the Decadal Survey
 - Total LCC between \$400M and \$1B
- Large missions are strategic missions recommended by the Decadal Survey
 - Total LCC in excess of \$1B
- Contributions to non-NASA missions may either be PI-led, AO selected (Partner Missions of Opportunity) or may be strategic in origin.
 - Partner Missions of Opportunity (PMO): AO cost cap \$75M
 - Strategic Contribution: Typically \$100-300M

Committee Questions: Strategic Science

- Decadal survey science priorities require large missions. The following examples are from the 2010 Decadal Survey:
 - Dark energy
 - Exo-Earth characterization
 - Gravitational wave detection
 - Large area, high resolution X-ray spectroscopy
- Large missions have pros and cons
 - + Large missions accomplish science that cannot otherwise be done
 - + Large, general purpose observatories can be used by the general observer community in ways that were not envisioned by the designers nor captured in the science requirements
 - + Large missions drive development of new capabilities that can be infused later into smaller missions without further technical development
 - Large mission costs must be carefully managed to preserve programmatic balance
 - Large missions are too big to fail

Committee Questions: Capability and Leadership

- What concerns do you have about how long flagship missions take for development and the difficulty for young researchers or even potential future PIs to gain experience?
 - Flagship mission instruments are for the most experienced PIs
 - A balanced program provides opportunities for PI development through suborbital investigations, instruments, small missions
- What is the value of flagship missions for science base concerns? Talent pools, corporate knowledge, continuity of capabilities etc., and the impact on the future health of this support base?
 - It is conceivable that the science base could be maintained with a large fleet of small observatories, but it would not be paradigm shifting science
 - The US has unique capabilities for large mirror systems, low noise detectors, high contrast imaging, etc.
 - Many of these capabilities are unique to astrophysics; some have dual use
 - Without an ongoing program of missions that use these capabilities, the capabilities will be lost
- What is the role of international partnerships in strategic and flagship missions? How is this different for other classes of missions?
 - It is anticipated that all future large missions will be international in nature
 - That is not true for medium and small missions

Committee Questions: Technology Development

- Do you have a separate technology development line?
 - Astrophysics develops technology primarily through three mechanisms:
 - Astrophysics Research and Analysis (APRA) is a 100% technology R&A program. Approximately 50% of the funding goes toward low TRL work (TRL 1-3) in detectors and other technology areas, and the other 50% goes toward suborbital payloads that use balloons, sounding rockets, cubesats, and the ISS to take technologies to TRL 7/8/9.
 - Strategic Astrophysics Technology (SAT) is a combination of competed and directed technology efforts directed at developing the technologies needed for future strategic missions, usually identified in the Decadal Survey or Astrophysics Roadmap, through TRL 3-5/6.
 - Preformulation of large strategic missions includes focused technology development of any outstanding technology needs. For instance, WFIRST has been developing detector and coronagraph technology.
 - Relevant technology is also developed by NASA STMD and other Federal agencies.

Committee Questions: Technology Development

- Do you primarily use flagship missions for technology development?
 - Not primarily. However mid-TRL technology development is always a part of preformulation for large strategic missions.
 - Large strategic missions that do not require technology development are generally less compelling.
- Can you afford the risk of including new technologies on flagship missions?
 - Yes but it must be appropriately funded, appropriately managed, and begun during preformulation.
- Can you do technology development with smaller size missions?
 - Yes but Explorers are by definition expected to be low risk and to apply already developed technology.
 - The technology for Explorers, as well as strategic missions, is developed in the APRA and SAT programs and generally tested on suborbital missions.
- Do you treat new technology at all differently on flagship missions vs. small missions (by, for example, incentivizing missions to use new technologies)?
 - Astrophysics has not yet chosen to incentivize PI-led Explorers to use new technologies. All the relevant technologies can be tested in the suborbital program before being infused into an Explorer.
 - Flagships are generally enabled through the application of new technology. Technology development is a necessary part of preformulation and is the objective of the SAT program.

Committee Questions: Cost Control for Large Missions

- How do cost overruns on flagship class missions affect the other mission classes in your portfolio?
 - Lessons learned from JWST:
 - Mature technology early
 - Properly scope the effort (descope early, assess requirements)
 - Budget adequate reserves year-by-year
 - Understand the budget impact of carrying risks and delays into the future
 - Program balance can be maintained (no impact to other mission classes) by extending development period without increasing annual budget.
Impact is delay to start of next large strategic mission.
 - Lowest cost impact is to solve overruns when they happen, but this necessarily has a current impact on other mission classes, so not always chosen.
- How do you address cost overruns on flagship missions vs. how you address cost overruns on smaller class missions?
 - Large strategic missions are probably too important scientifically to cancel when they overrun. Overruns must be handled through descopes and replanning.
 - PI-led Explorers are cost capped, and they should be terminated if they overrun significantly before confirmation. The ability to stay within the cost cap is a feature of the mission class and also a factor in the selection.

Fraction of budget on Large Observatories

