

Plume Fly-Through Missions

Detecting life in situ at several kilometers per second

Morgan L. Cable

December 6, 2016

Jet Propulsion Laboratory
California Institute of Technology

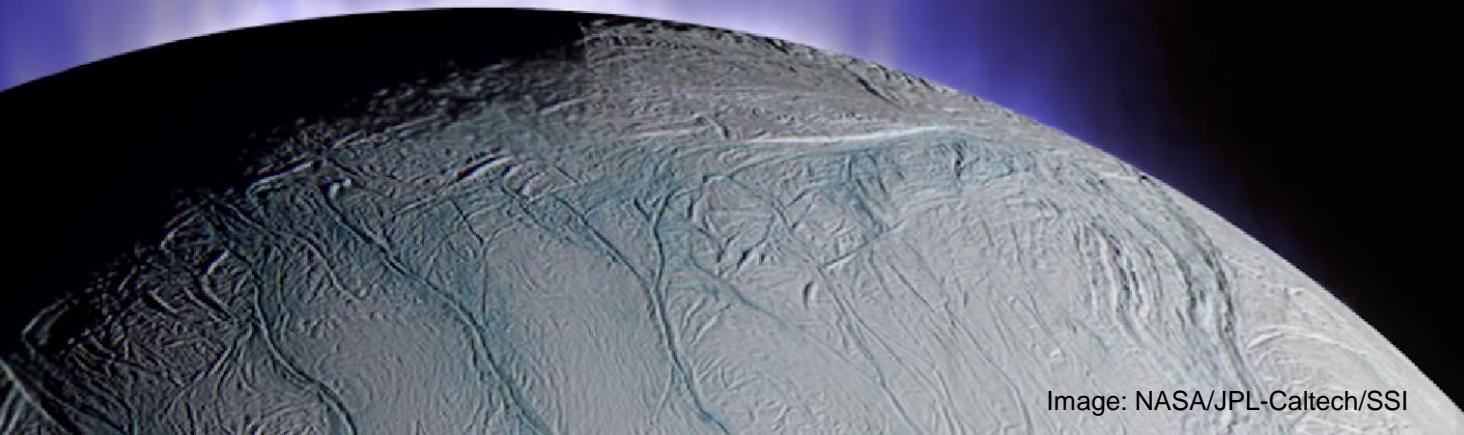
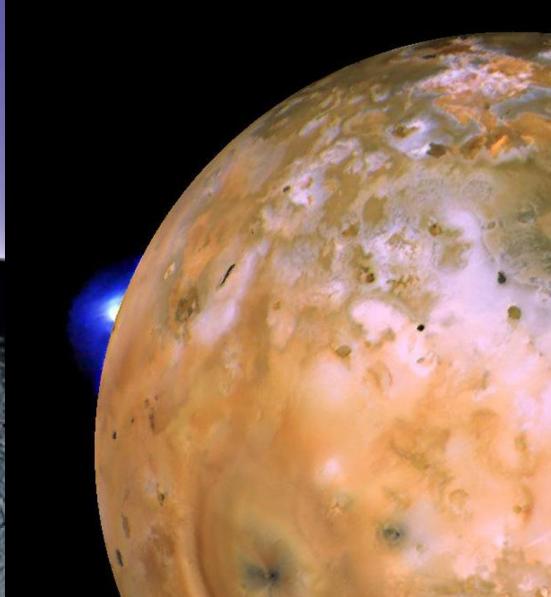
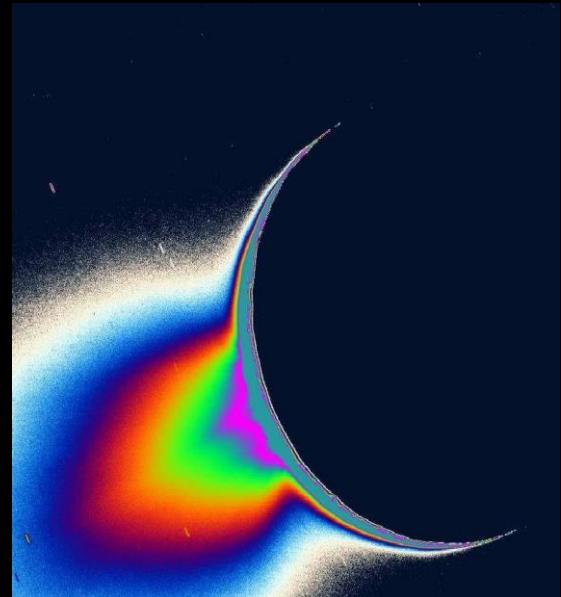



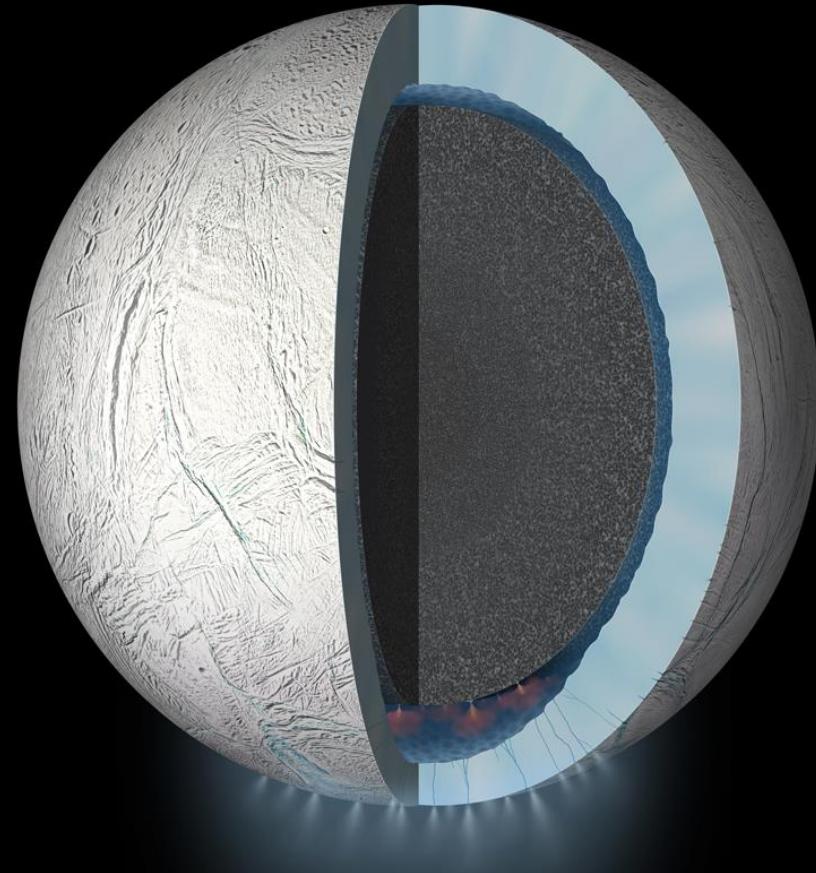
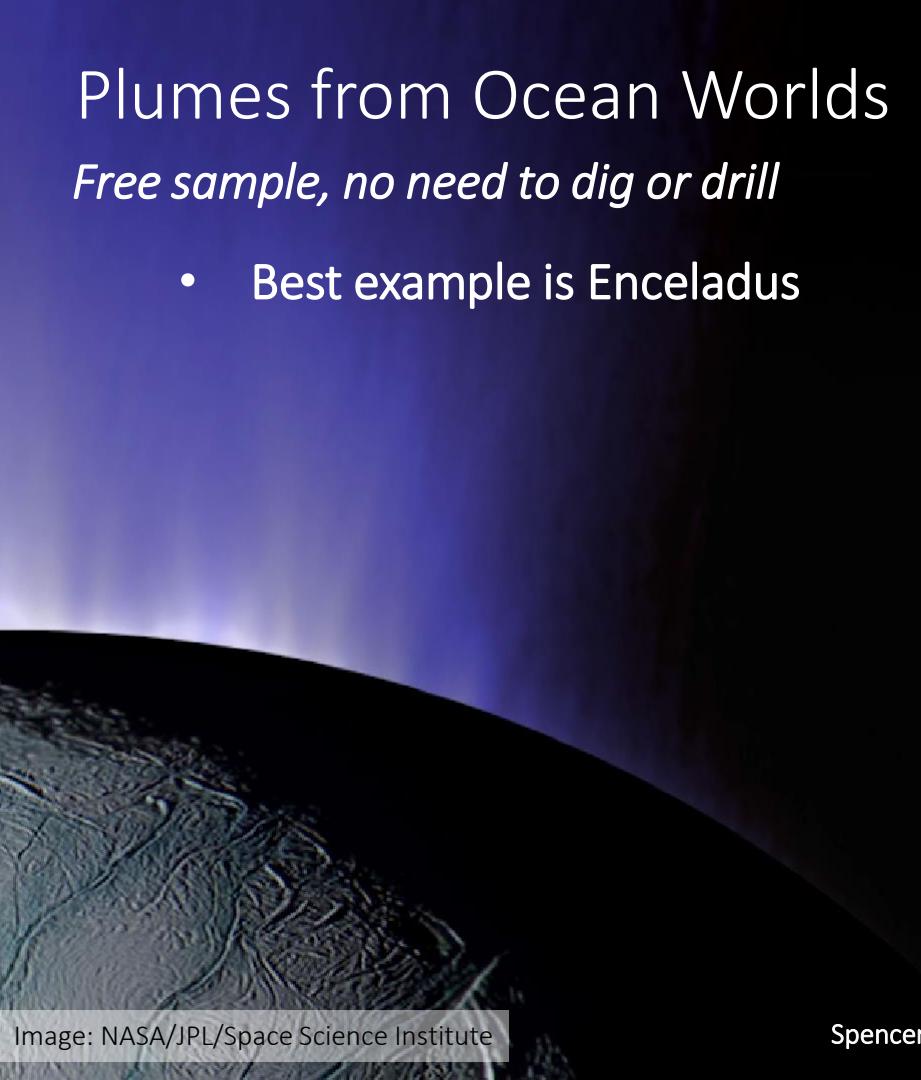
Image: NASA/JPL-Caltech/SSI

Plumes in the Solar System

Fantastic plumes and where to find them

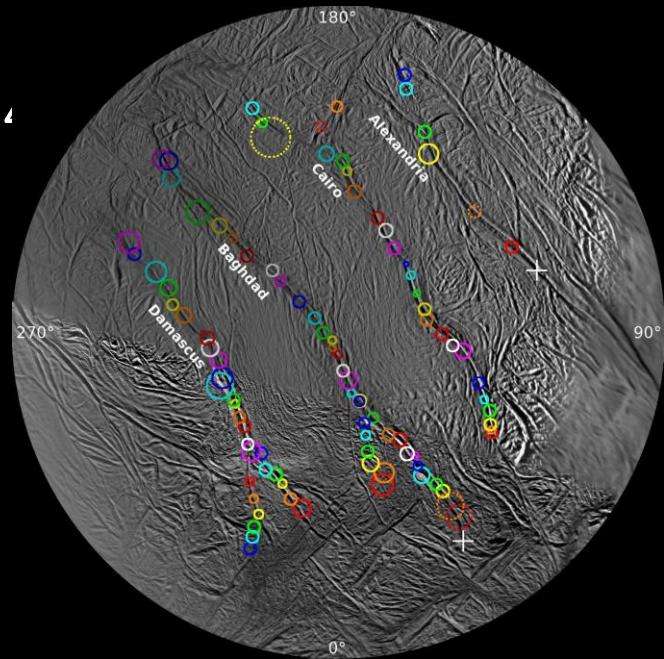
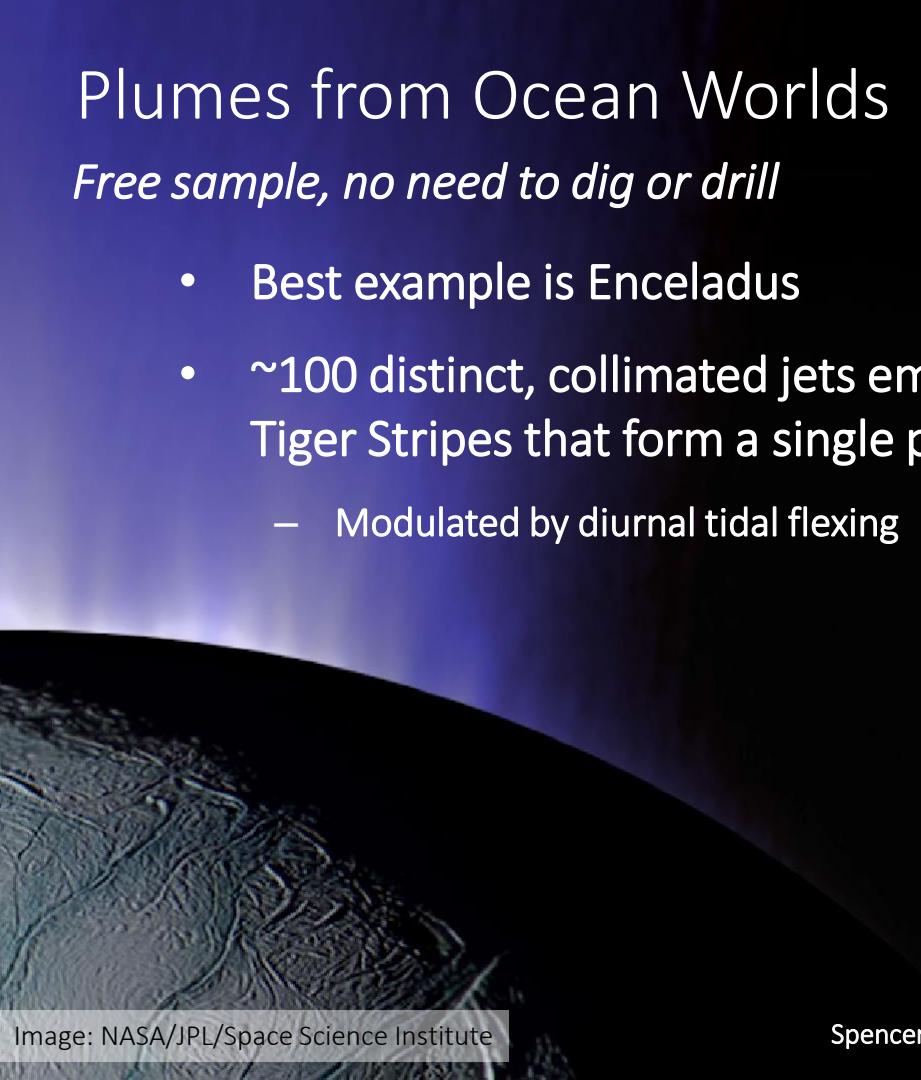

Volcanic

Cometary



Ocean Worlds

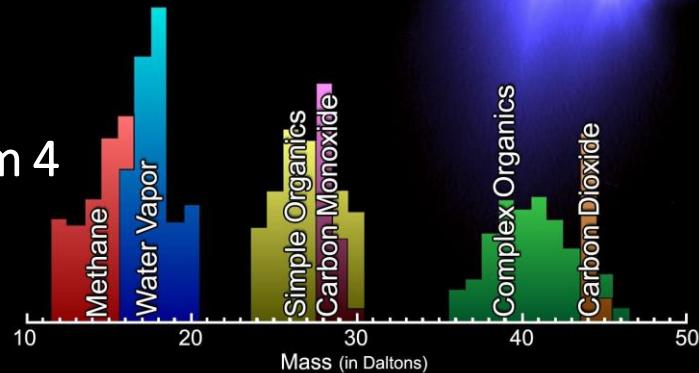
Plumes from Ocean Worlds

Free sample, no need to dig or drill



- Best example is Enceladus

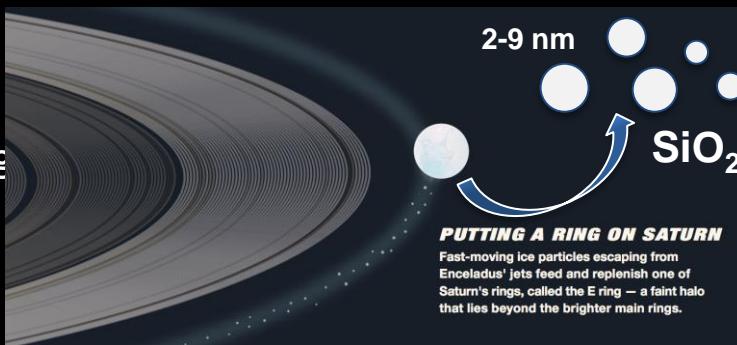
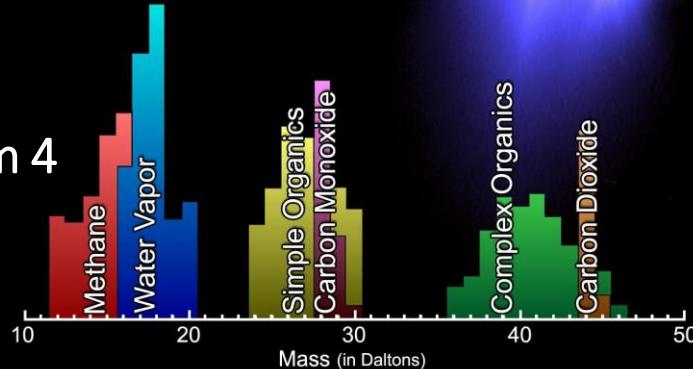
Plumes from Ocean Worlds

Free sample, no need to dig or drill

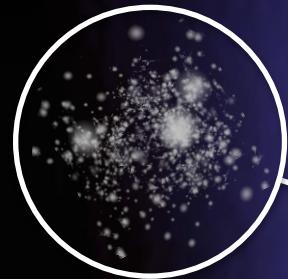

- Best example is Enceladus
- ~100 distinct, collimated jets emanating from 4 Tiger Stripes that form a single plume
 - Modulated by diurnal tidal flexing

Plumes from Ocean Worlds

Free sample, no need to dig or drill



- Best example is Enceladus
- ~100 distinct, collimated jets emanating from 4 Tiger Stripes that form a single plume
 - Modulated by diurnal tidal flexing
- Plume has both vapor and solid components
 - Vapor: H_2O , CO_2 , CH_4 , NH_3 , heavier hydrocarbons and organics

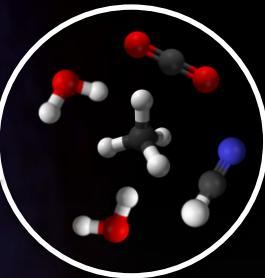
Plumes from Ocean Worlds


Free sample, no need to dig or drill

- Best example is Enceladus
- ~100 distinct, collimated jets emanating from 4 Tiger Stripes that form a single plume
 - Modulated by diurnal tidal flexing
- Plume has both vapor and solid components
 - Vapor: H_2O , CO_2 , CH_4 , NH_3 , heavier hydrocarbons and organics
 - Particles: Water-ice, salts (mostly NaCl), SiO_2 , org

Searching for Life in the Plume

Inquiring minds want to know



Plume grains

- Composition
- Abundance
- Size distribution
- Formation mechanism

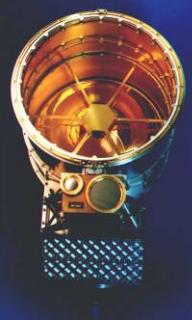
Plume structure
and dynamics

Plume gas

- Composition
- Abundance
- Source

All placed in context – evolution and
habitability of the Ocean World

Instruments (Past and Present)


Life detection on the fly

Type	Target(s)	Recent Examples
Mass spectrometer	<ul style="list-style-type: none">• Volatile organics in plume gas• Ions from plume grains post-impact	<ul style="list-style-type: none">• Cassini INMS• Europa MASPEX

Pros	Cons
<ul style="list-style-type: none">• Extensive flight heritage, including plume investigations• Significant recent advancements, in particular in mass resolution and sensitivity	<ul style="list-style-type: none">• Deconvolution of complex mixtures requires supporting laboratory experiments

Instruments (Past and Present)

Life detection on the fly

Type	Target(s)	Recent Examples	
Dust detector	<ul style="list-style-type: none">Organics trapped in plume grainsSalts, ions in plume grains	<ul style="list-style-type: none">Cassini CDAStardust CIDAEuropa SUDA	

Pros	Cons
<ul style="list-style-type: none">Extensive flight heritage, specific to plume investigationsRapid measurement cadence gives plume structure	<ul style="list-style-type: none">Ionization is velocity- and mass-dependent

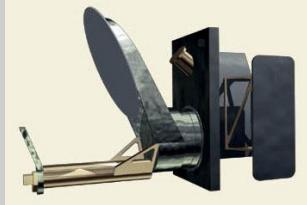
Instruments (Past and Present)

Life detection on the fly

Type	Target(s)	Recent Examples
NIR spectrometer	<ul style="list-style-type: none">Primary plume constituents (gas and grains)Salts, CO₂, SO₂, hydrocarbons	<ul style="list-style-type: none">Cassini VIMSEuropa MISE

Pros	Cons
<ul style="list-style-type: none">Imaging spectrometers provide identification and plume structureGrain size at high phase angle	<ul style="list-style-type: none">Limited sensitivity for trace speciesCan identify functional groups, but not complex organic structures specifically

Instruments (Past and Present)


Life detection on the fly

Type	Target(s)	Recent Examples
UV spectrometer/ spectrograph	<ul style="list-style-type: none">Hydrogen, oxygen aurorasSimple organics (CO₂, acetylene)	<ul style="list-style-type: none">Cassini UVISJuno UVSEuropa UVS

Pros	Cons
<ul style="list-style-type: none">Plume structure and variabilityIndirect evidence through surface albedoSmall angular scans at distance	<ul style="list-style-type: none">Limited sensitivity for trace species

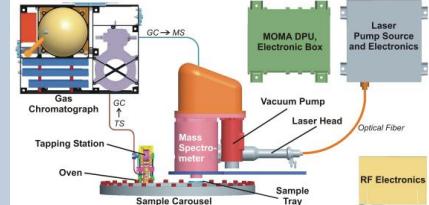
Instruments (Past and Present)

Life detection on the fly

Type	Target(s)	Recent Examples	
Microwave (sub-mm) radiometer	<ul style="list-style-type: none">• Plume water vapor distribution, temperature• Volatile organics in plume gas (NH₃, CO, HCN, acetonitrile, formaldehyde)	Rosetta MIRO	

Pros	Cons
<ul style="list-style-type: none">• 3D plume structure and dynamics• Water temperature	<ul style="list-style-type: none">• Only polar molecules in gas phase (no methane, CO₂, H₂, N₂)• Gas phase constituents only• Limited sensitivity for trace species

Instruments (Future)


Life detection on the fly

Type	Life-Specific Target(s)
Gas chromatograph or liquid chromatograph mass spectrometer (GC-MS/LC-MS)	<ul style="list-style-type: none">• Chiral amino acids• Proteins• Lipids

Pros	Cons
<ul style="list-style-type: none">• High fidelity identification of simple and complex organic molecules• Discrimination of chiral species	<ul style="list-style-type: none">• GC and LC columns must be tailored for the target species and possible confounding species• Limit of detection can be affected by separation front-end• Complex instrumentation (requires automated plume particle capture and extraction of organics)

Instruments (Future)

Life detection on the fly

Type	Life-Specific Target(s)
Laser desorption ionization mass spectrometer (LDI-MS) (aka MOMA)	<ul style="list-style-type: none">• Proteins• DNA, RNA• Lipids
Pros	Cons
<ul style="list-style-type: none">• Soft ionization method, reduced fragmentation of complex organics	<ul style="list-style-type: none">• Complex instrumentation (requires automated plume particle capture and exposure to LDI source)

Instruments (Future)


Life detection on the fly

Type	Life-Specific Target(s)	
Raman spectrometer	<ul style="list-style-type: none">Functional groups for key biomolecules (amines, carboxylic acids, ketones, etc.)	

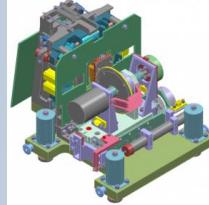
Pros	Cons
<ul style="list-style-type: none">Can be coupled to other techniques (microscopic imaging) to provide spatial context	<ul style="list-style-type: none">Can identify functional groups, but not complex organic structures specificallyComplex instrumentation (requires automated plume particle capture and extraction of organics or cells)

Instruments (Future)

Life detection on the fly

Type	Life-Specific Target(s)	
Immunoassay-based microfluidic chip (aka the LifeMarker Chip or similar)	<ul style="list-style-type: none">• DNA• RNA• Proteins	
Pros	Cons	
<ul style="list-style-type: none">• High fidelity identification of complex, information-containing biomolecules	<ul style="list-style-type: none">• Targets only 'Earth-centric' biomarkers• Complex instrumentation (requires automated plume particle capture and extraction of organics)	

Instruments (Future)


Life detection on the fly

Type	Life-Specific Target(s)
Microchip capillary electrophoresis with laser-induced fluorescence	<ul style="list-style-type: none">• Chiral amino acids• Lipids• Amines• Thiols <ul style="list-style-type: none">• Fatty acids• DNA• RNA• Proteins

Pros	Cons
<ul style="list-style-type: none">• High fidelity identification of simple and complex organic molecules• Discrimination of chiral species• Multiple analyses performed on a single chip	<ul style="list-style-type: none">• Complex instrumentation (requires automated plume particle capture and extraction of organics)

Instruments (Future)

Life detection on the fly

Type	Life-Specific Target(s)
Microscopic imager (holographic, AFM, visible)	<ul style="list-style-type: none">• Individual cells, morphology• Motility, movement of cells
Pros	Cons
<ul style="list-style-type: none">• Could be a 'smoking gun' for life	<ul style="list-style-type: none">• Complex instrumentation (requires automated plume particle capture and concentration of cellular/particulate material)• Good as a supporting life-detection technique, difficult to be convincing enough alone (aka ALH84001)• Whole cells may not be very common in plume grains

Plume Probe Parameters

Things to consider when designing your plume flythrough

- **Flythrough altitude**
 - Plume density and particle size distribution is highly dependent on size of the body
- **Flythrough speed**
 - Higher impact velocities can ionize molecules, but fragmentation may increase
- **Sample capture medium**
 - Hard capture materials (metal plate) – Easy to clean, can help to ionize on impact
 - Soft capture materials (aerogel, etc.) – Preserves particles but difficult to remove them after collection
 - Custom designs and materials – varied

Plume Probe Parameters

Things to consider when designing your plume flythrough

- **Number of flythroughs**
 - Repeated in situ measurements to build statistics?
 - Trapping species over multiple passes?
- **Species you are targeting**
 - Biomarker molecules or whole cells?
 - Are they concentrated in the gas or grains?
 - Susceptible to fragmentation?

Life Detection in a Plume

Keeping it in perspective

- Context is critical
- In situ life detection, while revolutionary, is only the first step
- Any promising in situ result would justify sample return

Jet Propulsion Laboratory
California Institute of Technology