

Update on Aeronautics

Dr. Jaiwon Shin, Associate Administrator
Aeronautics Research Mission Directorate

ASEB

May 1, 2017

NASA Aeronautics

NASA Aeronautics Vision for Aviation in the 21st Century

Global

Sustainable

Transformative

6 Strategic Thrusts

Safe, Efficient Growth
in Global Operations

Innovation in Commercial
Supersonic Aircraft

Ultra-Efficient
Commercial Vehicles

Transition to Alternative
Propulsion and Energy

Real-Time System-Wide
Safety Assurance

Assured Autonomy for
Aviation Transformation

U.S. leadership for a new era of flight

FY 2017 President Budget Request

\$ Millions	FY 2015	Enacted FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026
Aeronautics	\$642.0	\$640.0	\$790.4	\$846.4	\$1,060.1	\$1,173.3	\$1,286.9	\$1,294.2	\$1,307.6	\$1,218.1	\$829.7	\$839.5
Airspace Operations and Safety	154.0		159.4	159.2	176.2	189.1	221.5	198.7	200.9	193.2	175.5	167.8
Advanced Air Vehicles	240.6		298.6	277.4	308.8	311.6	312.6	321.3	315.0	318.9	317.7	326.7
Integrated Aviation Systems	150.0		210.0	255.4	381.4	493.0	556.7	591.5	612.2	525.0	203.8	210.6
Transformative Aeronautics Concepts	97.4		122.3	154.4	193.8	179.7	196.2	182.8	179.4	181.0	132.7	134.4

Aeronautics budget includes paid-for 10-year mandatory funding from the Administration's 21st Century Clean Transportation Plan.

FY 2018 Budget Blueprint Excerpts

For NASA...

The National Aeronautics and Space Administration (NASA) is responsible for increasing understanding of the universe and our place in it, advancing America's world-leading aerospace technology, inspiring the Nation, and opening the space frontier. The Budget increases cooperation with industry through the use of public-private partnerships, focuses the Nation's efforts on deep space exploration rather than Earth-centric research, and develops technologies that would help achieve U.S. space goals and benefit the economy.

The President's 2018 Budget requests \$19.1 billion for NASA, a 0.8 percent decrease from the 2017 annualized CR level, with targeted increases consistent with the President's priorities.

For Aeronautics...

Paves the way for eventual over-land commercial supersonic flights and safer, more efficient air travel with a strong program of aeronautics research. The Budget provides \$624 million for aeronautics research and development.

New Aviation Horizon Initiative

THE FUTURE OF FLIGHT

CLEANER, FASTER, QUIETER

LBFD Project Scope of Work

Aircraft Development (FY18-FY21)

- Detailed Design
- Fabrication, Integration, Ground Test
- Checkout Flights
- Subsonic Envelope Expansion
- Supersonic Envelope Expansion

Acoustic Validation (FY21-FY22)

- Near- and Far-field Measurements
- Ground Measurements (CST Project)
- Initial community response overflight study

Proposed Follow-on Project (CST)

Community Response (FY22+)

- Multiple campaigns (4 to 6) over representative communities and weather across the U.S.

Systematic Approach Leading to Community Response Testing

University Leadership Initiative

Universities taking a larger leadership role in advancing the revolutionary ideas needed to transform aviation and further advance U.S. global leadership

University of South Carolina Advanced, wireless communication networks to enhance the safety and efficiency of air traffic management with both piloted aircraft and drones

Texas A&M Designing commercial supersonic aircraft that could modify their shape during a flight to help minimize noise from sonic booms

University of Tennessee, Knoxville Designing ultra-efficient aerodynamic wing that could enable significant savings in fuel or energy consumption

Ohio State University Electric propulsion including areas of battery and energy storage and thermal management among others

Arizona State University Safely integrating the complex set of data sources that will drive future air traffic management systems

Total value of the five awards over 5 years up to \$50M

Vision for the NASA Hypersonic Technology Project

Advance and Utilize analytical tools, test techniques, fundamental capabilities and critical technologies to ensure U.S. supremacy in hypersonics

Vision

- Conduct fundamental research to enable a broad spectrum of hypersonic systems and missions by advancing the core capabilities and critical technologies underpinning the mastery of hypersonic flight and bringing them to bare on National Programs

Scope

- Fundamental research spanning technology readiness and system complexity levels
- Critical technologies enabling re-usable hypersonic systems
- System-level research, design, analysis, validation
- Engage, invigorate and train the next generation of engineers

NASA Core Hypersonic Competencies

**Hypersonic
Airbreathing
Propulsion**

**Vehicle Level
Conceptual
Design & Systems
Analysis**

NASA has the knowledge to develop and apply our world class combination of computational expertise, experimental facilities and flight experience in propulsion, aerothermodynamics, materials, thermal structures, guidance & control and conceptual vehicle design to deliver mission success.

**CFD Code
Development / Application**

Ground Testing & Diagnostics

Structures & Materials

NASA Aeronautics/DoD: Leveraging hypersonic capabilities

Department of Defense

- Focus on operational mission (especially in near-term)
- In-house expertise aligned with mission need
- Enhancing test capabilities
- Significant investment (especially in demonstrators)

Develop new military capability

Share valuable data with NASA enables DOD Mission

Provide subject matter experts and key facilities

Developing future workforce

NASA

- Focus on fundamental research (long term emphasis with near term impact)
- Fully utilizes data from demos to advance/validate fundamental capabilities
- Performs independent studies to assess Technology Readiness for advanced civil & military applications
- Maintains unique facilities & skills with unique expertise to benefit broad aerospace community

Fundamental research base for country & future missions