

NASA and the Search for Life on Planets around Other Stars

A presentation to the
National Academies Committee on
Exoplanet Science Strategy

6 March 2018

Astrophysics

Paul Hertz
Director, Astrophysics Division

Douglas Hudgins
Program Scientist, Exoplanet Exploration Program

Key NASA/SMD Science Themes

Protect and Improve
Life on Earth

Search for
Life Elsewhere

Discover the Secrets
of the Universe

Why Astrophysics?

Astrophysics is humankind's scientific endeavor to understand the universe and our place in it.

How did our universe begin and evolve?

How did galaxies, stars, and planets come to be?

Are we alone?

Enduring National Strategic Drivers

NASA's Exoplanet Exploration Program

Foundational Documents for the NASA's Astrophysics Division

SCIENCE PLAN

2014

The NExSS project is overseen by representatives from NASA HQ, three co-leads, and a Steering Committee composed of the PIs of funded proposal teams selected to be the founding members of NExSS.

[Meet the Team](#)

[Many Worlds](#)

[FAQs](#)

Many Worlds is a website for everyone interested in the burgeoning field of exoplanet detection and research. It presents columns, news stories and in-depth features, as well as the work of guest writers.

What is NExSS? Why and how was it created? What are the scientific goals associated with NExSS? How can I join the NExSS community? Discover answers to these frequently asked questions and more.

NASA's cross-divisional Search for Life Elsewhere

ASTROPHYSICS

- Exoplanet detection and characterization
- Stellar characterization
- Mission data analysis

Hubble, Spitzer, Kepler, TESS, JWST, WFIRST, etc.

PLANETARY SCIENCE RESEARCH

- Exoplanet characterization
- Protoplanetary disks
- Planet formation
- Comparative planetology

EARTH SCIENCES

- GCM
- Planets as systems

Planetary SCIENCE/ ASTROBIOLOGY

- Comparative planetology
- Planetary atmospheres
- Assessment of observable biosignatures
- Habitability

HELIOPHYSICS

- Stellar characterization
- Stellar winds
- Detection of planetary magnetospheres

Exoplanet Exploration at NASA

2007 - present

The Spitzer Space Telescope

For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems.

- Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.

A 20-day long Spitzer observation of the TRAPPIST-1 system revealed 7 earth-sized planets, four of which were previously unknown.
Gillon et al., Nature, 2017.

Transit-timing variation in the planet K2-24b cause by gravitational interaction with K2-24c

The Spitzer Space Telescope

For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems.

- Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.
- Spitzer measurements of the IR emission spectra from “hot Jupiter” exoplanets have been used to constrain the atmospheric composition of those planets, and thermal maps generated by photometric monitoring of such planets during their orbits provides insight into their atmospheric dynamics.

The Spitzer Space Telescope

For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems.

- Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.
- Spitzer measurements of the IR emission spectra from “hot Jupiter” exoplanets have been used to constrain the atmospheric composition of those planets, and thermal maps generated by photometric monitoring of such planets during their orbits provides insight into their atmospheric dynamics.
- Gravitational microlensing observations combining measurements from Spitzer and those from ground-based observatories can break degeneracies and allow complete characterization of planets orbiting distant lensing stars.

Udalski et al., ApJ, 2015.

The Hubble Space Telescope

Hubble has made important contributions to our understanding of exoplanets and exoplanetary systems by both indirect and direct observations.

- Hubble has revealed the absorption of such species as H, C, O, CO₂, H₂O, and CH₄ in the upper atmospheres of transiting hot Jupiters, and measured the temperature distribution and water abundance at varying depths into their atmospheres.

Hubble/NICMOS measurement of the absorption of methane in the atmosphere of HD189733b.
Swain et al., Nature, 2008.

The temperature map of exoplanet WASP-43b reveals a steep temperature gradient from 2800°F on the day side to 1000°F on the night side. *Stevenson et al., Science, 2014.*

The Hubble Space Telescope

Hubble has made important contributions to our understanding of exoplanets and exoplanetary systems by both indirect and direct observations.

- Hubble has revealed the absorption of such species as H, C, O, CO₂, H₂O, and CH₄ in the upper atmospheres of transiting hot Jupiters, and measured the temperature distribution and water abundance at varying depths into their atmospheres.
- Hubble has also been used to directly image debris disks in nearby, nascent planetary systems and study how they are sculpted by the influence of (seen and unseen) exoplanets.

MP Mus

HD 15115

HD 32297

HD 61005

HD 181327

The Hubble Space Telescope

Hubble has made important contributions to our understanding of exoplanets and exoplanetary systems by both indirect and direct observations.

- Hubble has revealed the absorption of such species as H, C, O, CO₂, H₂O, and CH₄ in the upper atmospheres of transiting hot Jupiters, and measured the temperature distribution and water abundance at varying depths into their atmospheres.
- Hubble has also been used to directly image debris disks in nearby, nascent planetary systems and study how they are sculpted by the influence of (seen and unseen) exoplanets.
- Hubble has directly imaged several young "Super-Jupiter" (M ~ a few times M_{Jup}) exoplanets on large (~tens to hundreds of AU) orbits around their star.

Hubble image showing the planet Fomalhaut b. Fomalhaut b is less than 500 Myr old and has a highly elliptical orbit that carries it between 50 to 300 AU from its parent star over a period of nearly 2000 years.

The Kepler Revolution

The Kepler Revolution

Kepler mission Take Away #1:

Planets are abundant. On average there is at least one planet for each of the stars in the night sky

Final Kepler Totals:

4034 Candidates

2335 Confirmed

49 Small HZ

- Radial Velocity
- Transit
- Imaging
- Microlensing
- Pulsar Timing
- Kepler

The Kepler Revolution

Kepler mission Take Away #2:

Small Planets ($R \leq 4 R_{\text{Earth}}$) are by far the most abundant

Kepler Revolution

Kepler mission Take Away #3:

Small Planets ($R \leq 4 R_{\text{Earth}}$) are by far the most abundant and they fall into two distinct size bins: $R \leq 1.5 R_{\text{Earth}}$, $R \geq 2 R_{\text{Earth}}$

Kepler Revolution

Kepler mission Take Away #4:

Planets with $R \leq 2 R_{\text{Earth}}$ are common in the habitable zones of F, G, K, and M dwarfs.

NASA-sponsored Ground Based Projects

Large Binocular Telescope Interferometer

Measuring average levels of exozodiacal dust in the habitable zone to inform the design of future exoplanet direct detection missions.

- Survey of zodiacal dust levels around 35 stars scheduled for completion is Sept. 2018
- Precision: 12 zodi single star one sigma; ensemble mean uncertainty better than 2 zodi
- Responds to Astro 2010 call for exoplanet precursor science

*LBTI instrument (green structure)
mounted between the two LBT
primary mirrors*

NASA-sponsored Ground Based Projects

Large Binocular Telescope Interferometer

Measuring average levels of exozodiacal dust in the habitable zone to inform the design of future exoplanet direct detection missions.

- Survey of zodiacal dust levels around 35 stars scheduled for completion is Sept. 2018
- Precision: 12 zodi single star one sigma; ensemble mean uncertainty better than 2 zodi
- Responds to Astro 2010 call for exoplanet precursor science

NASA-NSF EXoPLAnet Observational REsearch (NN_EXPLORE)

Partnership to use the NOAO share of the 3.5-m WIYN telescope on Kitt Peak to provide the community with the access and cutting-edge tools to conduct ground-based observations that advance exoplanet science

- Responds to Astro2010 call for investment in ground-based precision radial-velocity capabilities
- Emphasis on community follow-up of K2 and TESS targets & precursor science in support of future missions (Webb, WFIRST)

3.5-m WIYN Telescope
Kitt Peak National Observatory, Arizona

NASA-sponsored Ground Based Projects

Large Binocular Telescope Interferometer

Measuring average levels of exozodiacal dust in the habitable zone to inform the design of future exoplanet direct detection missions.

- Survey of zodiacal dust levels around 35 stars scheduled for completion is Sept. 2018
- Precision: 12 zodi single star one sigma; ensemble mean uncertainty better than 2 zodi
- Responds to Astro 2010 call for exoplanet precursor science

NASA-NSF EXoPLAnet Observational REsearch (NN_EXPLORE)

Partnership to use the NOAO share of the 3.5-m WIYN telescope on Kitt Peak to provide the community with the access and cutting-edge tools to conduct ground-based observations that advance exoplanet science

- Responds to Astro2010 call for investment in ground-based precision radial-velocity capabilities
- Emphasis on community follow-up of K2 and TESS targets & precursor science in support of future missions (JWST, WFIRST)

W. M. Keck Observatory

Strategic observing in support of NASA Astrophysics and Planetary Science flight missions.

- Advancing mission science through key strategic mission support observing programs, e.g. Kepler/K2, Hubble, WFIRST/Euclid, Webb, Europa Clipper.

Exoplanet Exploration at NASA

2018 - 2025

The TESS Mission

The Transiting Exoplanet Survey Satellite (TESS) – NASA's next mission dedicated to exoplanet exploration.

- Selected under NASA's Astrophysics Explorers Program in 2013.
- TESS is a two-year mission to provide an all-sky survey for transiting exoplanets around the nearest and brightest stars.

The TESS Mission

The Transiting Exoplanet Survey Satellite (TESS) – NASA's next mission dedicated to exoplanet exploration.

- Selected under NASA's Astrophysics Explorers Program in 2013.
- TESS is a two-year mission to provide an all-sky survey for transiting exoplanets around the nearest and brightest stars.
- TESS is made up of 4 wide-field cameras that together provide a $24^\circ \times 96^\circ$ field of view.
- TESS is an MIT-led NASA mission scheduled to launch in April 2018.
- By surveying the nearest and brightest stars, TESS will provide ideal targets for exoplanet characterization observations by Webb and perhaps other future exoplanet characterization missions.

The TESS Mission

- TESS will survey the sky in a series of 26 27-day observing campaigns, beginning with the southern hemisphere sky.

Ricker et al. (2014)
Sullivan et al. (2015)

The TESS Mission

- TESS will survey the sky in a series of 26 27-day observing campaigns, beginning with the southern hemisphere sky.
- TESS will not only monitor the brightness of some 200,000 pre-selected target stars across the sky every 2 min, but it will also collect full-frame images (FFIs) of the entire TESS FOV every 30 min.
- It is predicted that the TESS targets will yield ~1600 new exoplanets, while the FFIs may yield as many as 20,000 more.

- Detectable planets around 200,000 target stars
- Detectable planets around 2,000,000 stars in FFIs

Ricker et al. (2014)
Sullivan et al. (2015)

James Webb Space Telescope

The James Webb Space Telescope, NASA's next Great Observatory, is a 6.5-m space telescope operating at near- and mid-infrared wavelengths and scheduled to launch in 2019.

James Webb Space Telescope

The James Webb Space Telescope, NASA's next Great Observatory, is a 6.5-m space telescope operating at near- and mid-infrared wavelengths and scheduled to launch in 2019.

Webb will make important contributions to exoplanet science in two ways:

- 1) Transit/eclipse spectroscopy. By measuring the spectrum of light filtering through the atmosphere of a transiting exoplanet, or that emitted from the exoplanet, Webb will be able to probe the atmospheric composition and climatic characteristics of smaller planets on larger orbits than ever before.

Figure by S. Seager

James Webb Space Telescope

The James Webb Space Telescope, NASA's next Great Observatory, is a 6.5-m space telescope operating at near- and mid-infrared wavelengths and scheduled to launch in 2019.

Webb will make important contributions to exoplanet science in two ways:

- 2) Direct Imaging of large, young planets on large orbits (~10s of

James Webb Space Telescope

Cycle 1 Webb observations of Exoplanets and Exoplanetary systems
(includes both Guaranteed Time and Early Release Science observations).

Program	Title	PI	Allocation (hrs)
GTO 1177	MIRI observations of transiting exoplanets	Greene	75
GTO 1185	Transit Spectroscopy of Mature Planets	Greene	154
GTO 1188	Spectroscopy of Young, Widely Separated Exoplanets	Hodapp	23.8
GTO 1193	Coronagraphic Imaging of Young Planets - Part 1 - Moonshots	Beichman	46
GTO 1194	Characterization of the HR 8799 planetary system and planet search	Beichman	15
GTO 1195	Coronagraphic Imaging of Young Planets - Part 3	Beichman	10
GTO 1200	Architecture of Directly-Imaged Extrasolar Planetary Systems	Rameau	7.5
GTO 1201	NIRISS Exploration of the Atmospheric diversity of Transiting exoplanets (NEAT)	Lafreniere	200
GTO 1224	Transiting exoplanet characterization with JWST/NIRSPEC	Birkmann	50
GTO 1241	MIRI Coronagraphic Imaging of exoplanets	Ressler	19
GTO 1270	Characterizing the TWA 27 system	Birkmann	8.3
GTO 1274	Extrasolar Planet Science with JWST	Lunine	74.3
GTO 1277	Coronagraphic Observations of Young Exoplanets	Lagage	15.2
GTO 1279	Thermal emission from Trappist1-b	Lagage	25.1
GTO 1280	MIRI Transiting Observation of WASP-107b	Lagage	10.1
GTO 1281	MIRI and NIRSPEC Transit Observations of HAT-P-12 b	Lagage	32.1
ERS 1366	The Transiting Exoplanet Community Early Release Science Program	Batalha	78.1
ERS 1386	High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST	Hinkley	38.8
		TOTAL	882.3

WFIRST*

The Wide-Field InfraRed Survey Telescope (WFIRST) - a space observatory designed to settle fundamental questions in the areas of dark energy, exoplanets, and near-infrared astrophysics.

- 2.4-m space telescope, same size as the Hubble space telescope but with 100x larger field of view.
- 5-year mission planned for launch in mid-2020s.
- Equipped with two instruments:
 - Wide-Field Instrument (WFI) – a 288 megapixel camera operating in the near-infrared (0.7 - 2.0 μ m).
 - Coronagraph Instrument (CGI) – a technology demonstration instrument designed to demonstrate key coronagraph technologies required for a future exoplanet direct detection mission.

*Proposed for termination in FY 19 President's Budget

WFIRST

WFIRST Exoplanet Science – gravitational microlensing exoplanet survey.

When a foreground star passes in front of a more distant star, its gravitational attraction focuses the light causing it to appear to brighten.

Figure by J. Skowron, 2006

WFIRST

WFIRST Exoplanet Science – gravitational microlensing exoplanet survey.

When a foreground star passes in front of a more distant star, its gravitational attraction focuses the light causing it to appear to brighten.

If the lensing star happens to have a planet around it, the gravitational attraction of the planet will give rise to an observable “blip” in the light curve

Gravitational microlensing is sensitive to planets as small as Earth on orbits larger than ~ 1 AU, so it will be a perfect compliment to Kepler and RV surveys

Courtesy D. Bennett

WFIRST

WFIRST Exoplanet Science – exoplanet direct imaging.

As a technology demonstration, WFIRST will carry into space the first coronagraph designed for exoplanet direct imaging.

- A coronagraph is an instrument designed to efficiently block the light from a star, allowing scientists to detect and study much fainter objects lying close by.
- If the technology demonstration is fully successful, the WFIRST CGI will allow the first direct images of Jupiter, Saturn, and Neptune-sized exoplanets orbiting a few AU from their star.

Simulation of expected image with CGI on WFIRST of a planet (at about 5 o'clock) with no zodiacal dust cloud (left) and with a zodiacal dust cloud (right).

Exoplanet Exploration at NASA Beyond 2025

Exoplanet Exploration Beyond WFIRST

The ultimate goal of Astro2010's New Worlds Technology Development Program and NASA's Exoplanet Exploration Program is the characterization of habitable, rocky planets capable of supporting life.

- NASA's Exoplanet Exploration program is currently working to develop the technology that will be needed to fly a future "New Worlds Mission"—a space mission capable of imaging Earth-sized, rocky planets in the habitable zones of their stars and determining their characteristics.

Exoplanet Exploration Beyond WFIRST

The ultimate goal of Astro2010's New Worlds Technology Development Program and NASA's Exoplanet Exploration Program is the characterization of habitable, rocky planets capable of supporting life.

- NASA's Exoplanet Exploration program is currently working to develop the technology that will be needed to fly a future "New Worlds Mission"—a space mission capable of imaging Earth-sized, rocky planets in the habitable zones of their stars and determining their characteristics.
- The biggest challenge is "starlight suppression." The New Worlds Mission will need to be able to efficiently block the light from a star and allow us to detect the feeble reflected light from a planet 10 billion times fainter orbiting nearby.
- NASA is currently developing two candidate technologies that will allow us to achieve this demanding goal: (1) coronagraphs, and (2) starshades.

Exoplanet Exploration Beyond WFIRST

Coronagraphs (Internal Occulters)

A coronagraph uses a complex array of advanced optics and field stops to "condition" the light from the telescope, correcting for aberrations and removing the light from a star while passing the light from a planet only a tiny distance away.

A schematic illustration of the Lyot Coronagraph

Images from the Lyot Project

A composite coronagraphic image of the b-Pic system

Images courtesy of ESO

Exoplanet Exploration Beyond WFIRST

Starshades (External Occulters)

- A starshade makes use of a “sunflower” shaped mask that is tens of meters in diameter and flies tens or hundreds of thousands of kilometers in front of a normal space telescope and blocks the light from the star.
- Precise control of the shape of the petals is crucial to the performance of the starlight suppression system.

Desert testing of a starshade prototype.

Images courtesy S. Warwick/Northrop-Grumman Space Technologies

Preparing for the 2020 Decadal Survey

- Large Mission Concept Studies

- Competed Probe Concept Studies

- Cosmic Dawn Intensity Mapper (A. Cooray)
- Cosmic Evolution through UV Spectroscopy Probe (W. Danchi)
- Galaxy Evolution Probe (J. Glenn)
- High Spatial Resolution X-ray Probe (R. Mushotzky)
- Inflation Probe (S. Hanany)
- Multi-Messenger Astrophysics Probe (A. Olinto)
- Precise Radial Velocity Observatory (P. Plavchan)
- Starshade Rendezvous Mission (S. Seager)
- Transient Astrophysics Probe (J. Camp)
- X-ray Timing and Spectroscopy Probe (P. Ray)

- NASA Managed Exoplanet Probe Studies

- Exo-C (probe-class coronagraphic mission)
- Exo-S (probe-class starshade mission)

Exoplanet Technology Gap List

NASA's technology development activities also extend to include technologies that enable or enhance the capabilities of future exoplanet missions.

NASA tracks the network of interdependent technologies through a technology gap list that is revised and updated with community input on an annual basis.

2017 ExEP Technology Gap List

Tech. ID	Technology Title
CG-1	Large Aperture Primary Mirrors
CG-2	Coronagraph Architecture
CG-3	Deformable Mirrors
CG-4	Data Post-Processing Algorithms and Techniques
CG-5	Wavefront Sensing and Control
CG-6	Mirror Segment Phasing
CG-7	Telescope Vibration Sense/Control or Reduction
CG-8	Ultra-Low Noise Visible Detectors
CG-9	Ultra-Low Noise Near-Infrared Detectors
CG-10	Mirror Coatings for UV/NIR/Vis
CG-12	Ultra-Low Noise UV Detectors
CG-13	Ultra Low-noise Mid-IR detectors

Tech. ID	Technology Title
CG-14	Mid-IR Large Aperture Telescopes
CG-15	Mid-IR Coronagraph Optics and Architecture
CG-16	Cryogenic Deformable mirror
S-1	Controlling Scattered Sunlight
S-2	Starlight Suppression and Model Validation
S-3	Lateral Formation Sensing
S-4	Petal Shape and Stability
S-5	Petal Positioning Accuracy and Opaque Structure
M-1	Extreme Precision Ground-based Radial Velocity
M-2	Space-based Laser Frequency Combs
M-3	Astrometry
M-4	Ultra-Stable Mid-IR detector

Carried over from 2017
New to list in 2018

Exoplanet Technology Gap List

The technologies on the gap list are prioritized through a rigorous process involving review by an independent Exoplanet Technology Assessment Committee (ExoTAC). The resulting prioritization is published in an annual appendix to the ExEP Tech Plan and informs technology investments (both competed and directed) during the following year.

Technology Development Supporting Potential Future Large Astrophysics Missions

HabEx

- 12 of 12 gaps being addressed
- mirror coatings, starshade starlight suppression, starshade controlling scattered sunlight, starshade lateral formation sensing, starshade petal position accuracy, starshade petal shape and stability, *telescope vibration control*, deformable mirrors, **visible detectors**, *large aperture primary mirror*, **wavefront sensing and control**, **coronagraph optics and architecture**

Lynx X-ray Surveyor

- 4 of 5 gaps being addressed
- high-resolution lightweight X-ray optics, non-deforming X-ray reflecting coatings, **megapixel X-ray imaging detectors**, **large-format, high resolution X-ray detectors**, *X-ray grating arrays*

- **Purple**: technologies being advanced through SAT or directed development,
- **Bold**: technologies being advanced by WFIRST or ATHENA
- *Italics*: technologies being worked on through the STDT's design studies
- Additional gaps being addressed through APRA but not tallied here

LUVOIR

- 7 of 9 gaps being addressed
- closed-loop segment phasing, *vibration isolation*, **wavefront sensing and control**, **mirror segments**, **high-contrast segmented-aperture coronagraphy**, deformable mirrors, near infrared detectors, **visible detectors**, mirror coatings

Origins Space Telescope

- 2 of 5 gaps being addressed
- **far-infrared (FIR) detectors**, cryogenic readouts for large-format FIR detectors, warm readout electronics for large-format FIR detectors, **sub-Kelvin Coolers**, cryogenic FIR mirror segments

Exoplanet Roadmap

TECHNOLOGY

ULTRASTABLE STRUCTURES

ADVANCED DETECTORS

STARSHADE TECHNOLOGY

CORONAGRAPHS

SEGMENTED MIRRORS

HUBBLE

TESS

WEBB

SPITZER

KEPLER

TODAY

EXOPLANET POPULATIONS
DETECT ATMOSPHERES

2020s

ATMOSPHERIC CHEMISTRY
NEAREST EXOPLANETS

TECHNOLOGY

MISSIONS

WFIRST

POTENTIAL MISSIONS

STARSHADE
RENDEZVOUS

LUVOIR

HABEX

PENDING DECADAL SURVEY

2030s

DIRECT
IMAGING

2025s

EXOPLANET DIVERSITY
EXOZODIACAL DUST
DIRECT IMAGING

2035 & BEYOND

EXOPLANET
CHARACTERIZATION

*Searching for life
elsewhere*

Astrophysics

