

Atmospheric Biosignatures

Shawn Domagal-Goldman

@shawndgoldman

NASA Goddard Space Flight Center

HabEx

NE²SS

vpl

A planetary biosignature is a way that life has modified its environment in a potentially detectable way.

Biosignatures need to be:

1. Reliable
2. Survivable
3. Detectable

What does life
produce?

Can a dead planet
fool us?

How do we interpret
limited data?

How do we **quantify**
our **certainties**?

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

What does life
produce?

Can a dead planet
fool us?

How do we interpret
limited data?

How do we **quantify**
our **certainties**?

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

Features of Potentially Habitable Planets

What does life
produce?

Can a dead planet
fool us?

How do we interpret
limited data?

How do we **quantify**
our **certainties**?

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

McKay+ 1996

Nature

A dark, cloudy sky serves as the background for the text. The clouds are thick and dark, with some lighter, wispy areas. The text is in a large, white, sans-serif font.

Searching for the things life does is easy.

Eliminating abiotic processes is hard.

To eliminate abiotic processes, you need
to understand environmental context.

Features of Potentially Habitable Planets

Features of Potentially Habitable Planets

What does life
produce?

Can a dead planet
fool us?

How do we interpret
limited data?

How do we **quantify**
our **certainties**?

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

For exoplanets,
the environmental
context is beyond
global.

LUVOIR interim report
(HabEx and OST have similar step-wise observation sequences)

Atmospheric Models,
driven by host star and
biology or geology

Global Climate Models and Planet Systems
Models, driven by host star, that have bio-
geochemistry and photochemical modules

Intermodel and intermodule comparisons
of Global Climate Models, and Planet
Systems Models

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

What does life
produce?

Can a dead planet
fool us?

How do we interpret
limited data?

How do we **quantify**
our **certainties**?

Figure by Aaron Gronstal
NExSS Biosignatures Workshop/SAG16

Confidence level for detection of life	Posterior Probability $P(\text{life} \text{data, context})$	Evidence
<i>Level 1:</i> Very likely inhabited	90-100%	Multiple lines of evidence for life. Given current understanding of planetary processes, no known abiotic process can plausibly explain all observed features.
<i>Level 2:</i> Likely inhabited	66-100%	The body of evidence is consistent with the presence of life.
<i>Level 3:</i> About as likely as not inhabited (inconclusive)	33–66%	Some evidence for life, but insufficient contextual information to draw a definitive conclusion because plausible alternative abiotic explanations cannot be ruled out.

vegetation detection w/30-m space telescope

THE
ELECTRON
TOWER

Required number of habitable planet candidates

An abbreviated wish-list

- More complete incorporation of biological understanding into the field
- Models of abiotic processes under not-Earth-like conditions
- Evaluation of potential new biosignatures, and their false positives
- Sustained support of lab measurements of known and potential biosignatures
- Development/support for 3-D general circulation models, including chemistry
- Expansion of 1D models to include subsurface, surface (ocean, biology, geochemistry), atmospheric, and escape processes
- More accounting of model uncertainties, in general
- Quantitative biosignatures, and the adoption of statistical frameworks (e.g., Bayesian) to utilize them.
- *The interdisciplinary “glue” to make the above possible.*