

HARVARD-SMITHSONIAN
CENTER FOR ASTROPHYSICS

Microlensing Surveys for Planets with WFIRST

Jennifer C. Yee

Planet Formation Physics from WFIRST Planets

- Snow Line Physics
- Planet Embryos & Planet Ejection
- Galactic Distribution of Planets

The Physics of the Snow Line

A break in the mass ratio function

No planets with $\log q < -4.5$

What will WFIRST tell us about the Mass Ratio Function?

- What is q_{br} ?

Kepler break is @ smaller q ($\sim 3 \times 10^{-5}$)

q_{br} is independent of Stellar Mass

WFIRST can combine many techniques to measure Host Masses

What will WFIRST tell us about the Mass Ratio Function?

- What is q_{br} ?
- How does q_{br} vary with semi-major axis?
- How does q_{br} vary with host star mass?

Ground-based microlensing cannot measure the lowest mass ratios.

Only WFIRST can measure low mass ratio slope.

What will WFIRST tell us about the Mass Ratio Function?

- What is q_{br} ?
- How does q_{br} vary with semi-major axis?
- How does q_{br} vary with host star mass?
- What is the slope of the mass ratio distribution at small q ?

Large planets at a wide range of separations.

Planet mass in Earth masses

$$a_{\text{snow}} \propto M^x; x = 1.0$$

What does the Mass Ratio Function tell us about Physics?

- Where is the snow line?
- How does the snow line depend on stellar mass?
- Is the snow line fuzzy or sharp?

The Leftovers of Planet Formation

Ganymede-sized planets outside the snow line.

Are there other features at low mass ratios?

What will WFIRST tell us about the Smallest Planets?

- What does the mass (ratio) distribution look like for small q ? Is there a feature at Mars mass?

Population of Free-Floating Super Earths?

What will WFIRST tell us about the Smallest Planets?

- What does the mass (ratio) distribution look like for small q ? Is there a feature at Mars mass?
- What is the mass spectrum of free-floating planets?

Are Free-Floating Planets bound?

What will WFIRST tell us about the Smallest Planets?

- What does the mass (ratio) distribution look like for small q ? Is there a feature at Mars mass?
- What is the mass spectrum of free-floating planets?
- How do free-floating planets relate to bound planets? Are free-floating planets really free-floating?

What do the Smallest Planets tell us about Planet Formation?

- How efficient is planet formation?
- What is leftover from planet formation?
- What is ejected during planet formation?

The Galactic Distribution of Planets

A Mass Measurement = Distance Measurement

Microlensing finds planets from 0–8 kpc.

- How do planets vary with galactic distance?

- How does planet formation vary with galactic location?

Planet Formation Physics from a Complete Census

- Snow Line Physics
- Planet Embryos & Planet Ejection
- Galactic Distribution of Planets

WFIRST will resolve many microlensing events.

Ground

HST

$$a_{\text{snow}} \propto M^x; x = 2.0$$

$$a_{\text{snow}} \propto M^x; x = 1.5$$

