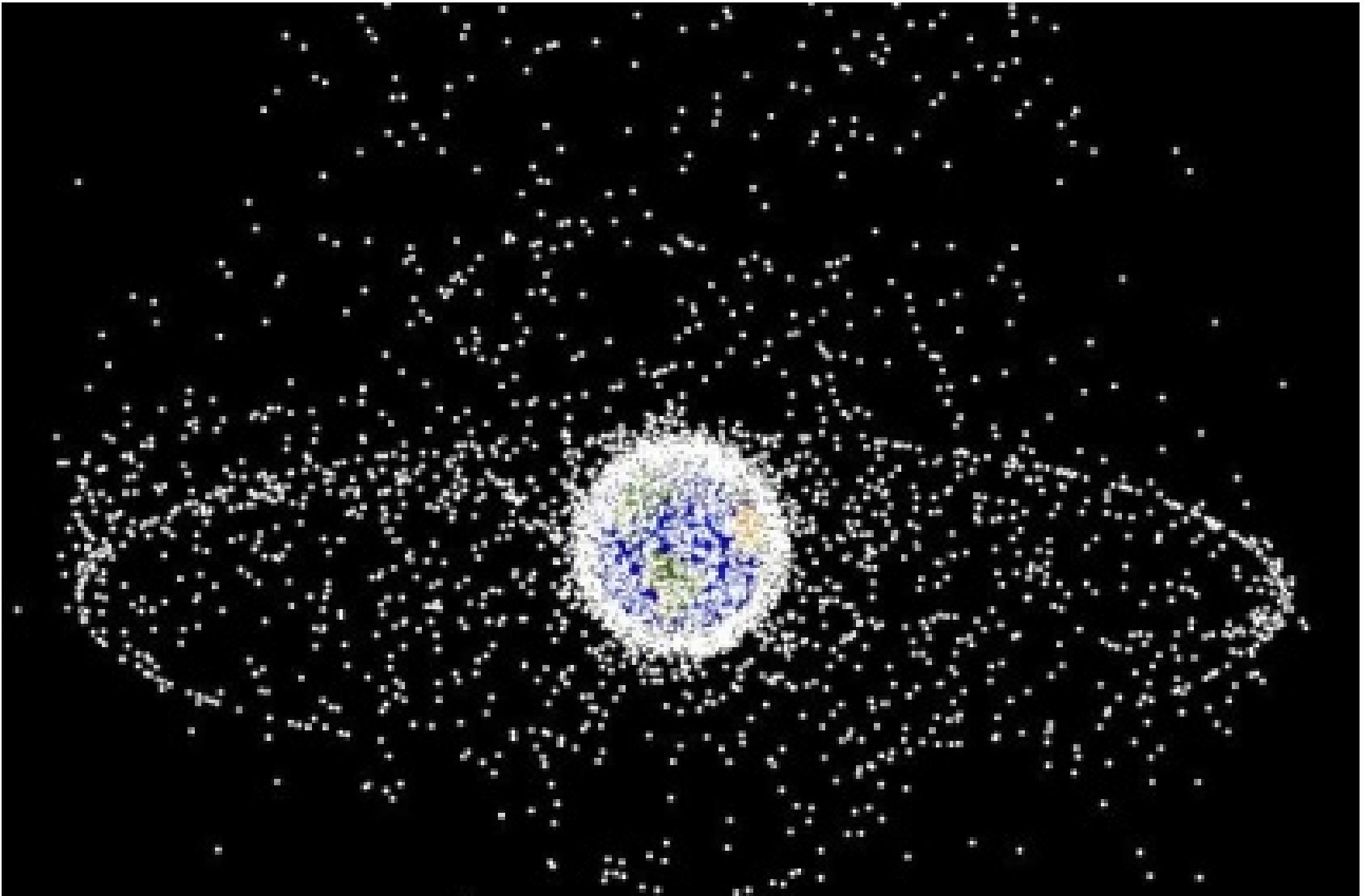


# Orbital Debris: Are We Asking the Right Questions?

*May 2018*

ASEB & SSB Joint Meeting

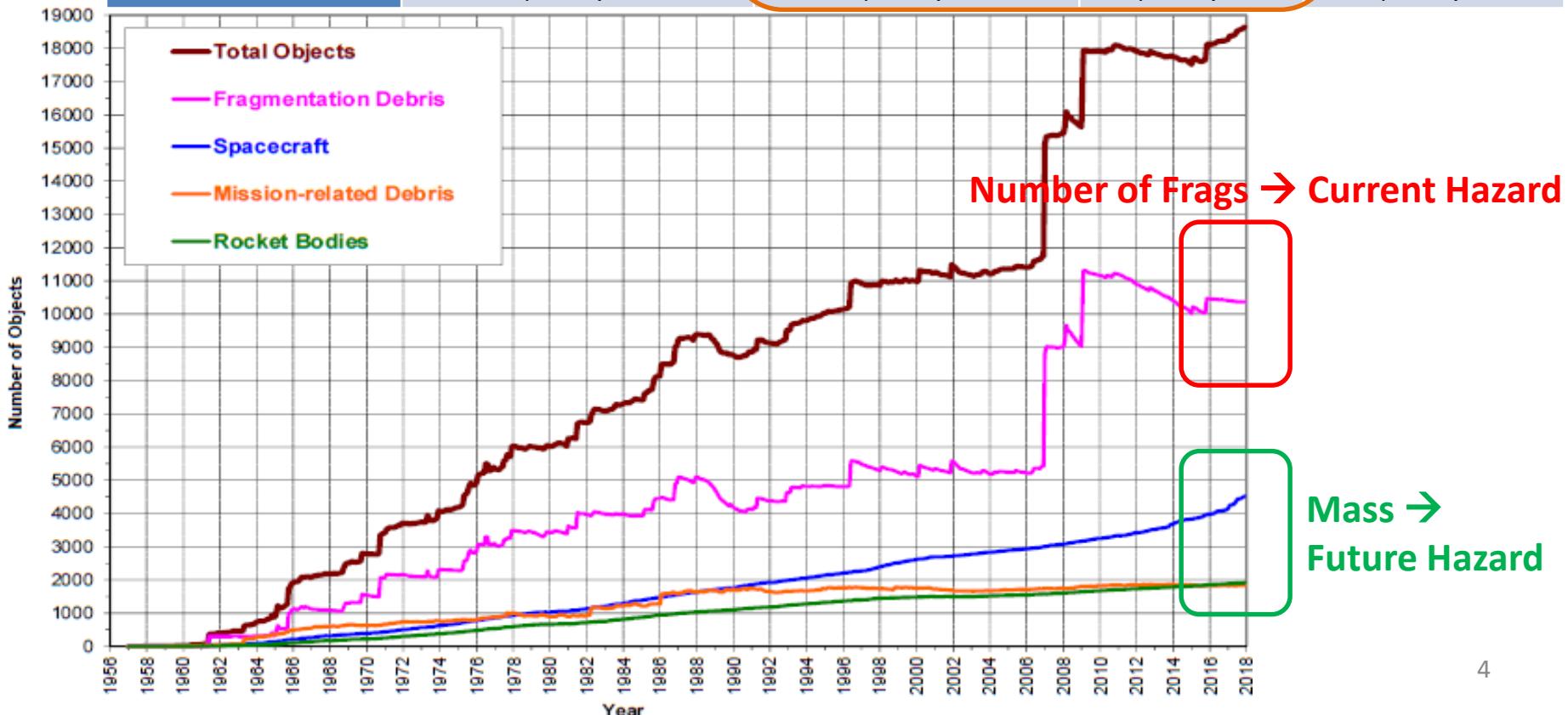

Dr. Darren McKnight  
Integrity Applications, Inc.

# 25-year Rule: Good or Bad?

- Established in the mid-1990's when...
  - Much less debris
  - Many fewer operational satellites and spacefaring entities
  - Spacecraft manufacturing was more of an art (one-off and unique) than a science (modular and mass production)

**25-year rule should be re-examined:**

- > Risk-based?**
- > Function of altitude, mass, and/or mission lifetime?**
- > OneWeb: shortest of 1x op life or 5years**




Large masses colliding at high velocities → most debris produced

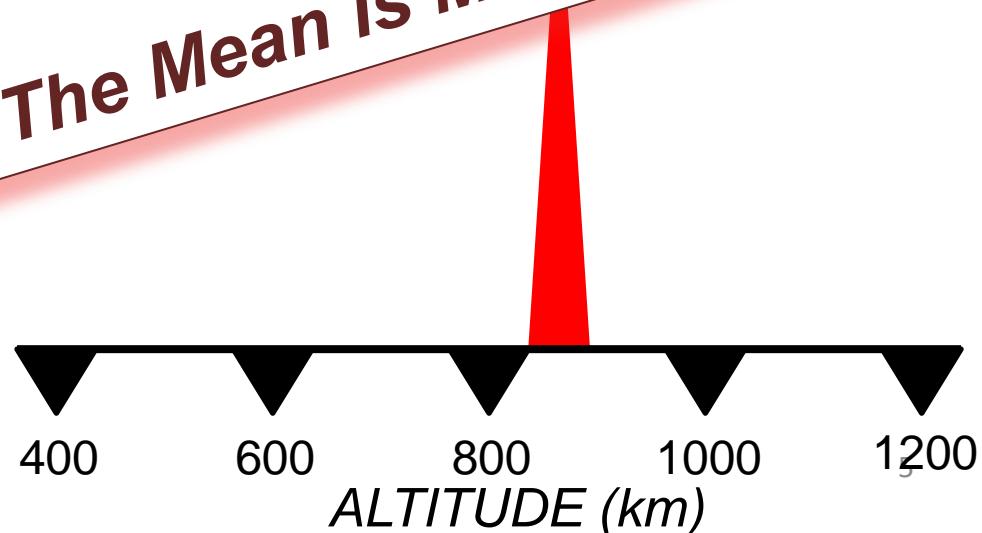
Risk Management: Where might this be the worst?

# Large Objects in Space - Number vs Mass

| Orbital Regime | Number / Mass (million kg) |                          |                     | Total               |
|----------------|----------------------------|--------------------------|---------------------|---------------------|
|                | Operational Payloads       | Non-Operational Payloads | Rocket Bodies       |                     |
| LEO            | ~950 / 0.5                 | ~1,100 / 1.8             | ~1,250 / 1.2        | ~3,300 / 3.4        |
| HEO            | ~250 / 0.3                 | ~50 / 0.1                | ~300 / 1.5          | ~600 / 1.9          |
| GEO            | ~500 / 1.5                 | ~650 / 1.6               | ~250 / 0.5          | ~1,400 / 3.6        |
| <b>Total</b>   | <b>~1,700 / 2.3</b>        | <b>~1,800 / 3.4</b>      | <b>~1,800 / 3.2</b> | <b>~5,300 / 8.9</b> |



# Future Debris Hazard → Mass


*FengYun @ 850kg → +3,200 fragments*

|    |             |           |         |
|----|-------------|-----------|---------|
| 1  | ISS         | <400km    | 417,000 |
| 2  | TIANGONG 2  | <400km    | 8,500   |
| 3  | ENVISAT     | ~765km    | 8,506   |
| 4  | ZENIT R/B   | ~845km    | 8,300   |
| 5  | ZENIT R/B   | ~845km    | 8,300   |
| 6  | ZENIT R/B   | ~845km    | 8,300   |
| 7  | ZENIT R/B   | ~845km    | 8,300   |
| 8  | ZENIT R/B   | ~845km    | 8,300   |
| 9  | ZENIT R/B   | ~845km    | 8,300   |
| 10 | ZENIT R/B   | ~845km    | 8,300   |
| 11 | ZENIT R/B   | ~845km    | 8,300   |
| 12 | ZENIT R/B   | ~845km    | 8,300   |
| 13 | ZENIT R/B   | ~845km    | 8,300   |
| 14 | ZENIT R/B   | ~845km    | 8,300   |
| 15 | ZENIT R/B   | ~845km    | 8,300   |
| 16 | ZENIT R/B   | ~845km    | 8,300   |
| 17 | ZENIT R/B   | ~845km    | 8,300   |
| 18 | ZENIT R/B   | ~845km    | 8,300   |
| 19 | ZENIT R/B   | ~845km    | 8,300   |
| 20 | ZENIT R/B   | ~845km    | 8,300   |
| 21 | ZENIT R/B   | ~845km    | 8,300   |
| 22 | ZENIT R/B   | ~765km    | 8,300   |
| 23 | ZENIT R/B   | ~765km    | 8,300   |
| 24 | ZENIT R/B   | ~765km    | 8,300   |
| 25 | COSMOS 2441 | Low-e LEO | 7,800   |

200,000kg in one sliver of LEO;  
Nearly 10% of all derelict mass:

**Collision → double catalog  
population**

**The Mean is Meaningless**



# Constellations vs Clusters

## Constellations

| Name          | #   | Total Mass (kg) | Altitude Span (km) | Trackable Collision Makes |
|---------------|-----|-----------------|--------------------|---------------------------|
| Spire         | 175 | 875             | 400-600 (200km)    | 14                        |
| Iridium       | 72  | 40,000          | ~760-770 (10km)    | 1,600                     |
| OneWeb        | 720 | 108,000         | ~1150-1250 (100km) | 450                       |
| SpaceX<br>IOC | 800 | 308,000         | ~1100-1300 (200km) | 2,300                     |

## Clusters

| Name  | #   | Total Mass (kg) | Altitude Span (km) | Trackable Collision Makes |
|-------|-----|-----------------|--------------------|---------------------------|
| C775  | 89  | 100,000         | 730-800 (70km)     | 4,500                     |
| C850  | 36  | 208,000         | 815-860 (45km)     | 16,000                    |
| C975  | 286 | 560,000         | 900-1025 (125km)   | 4,500                     |
| C1500 | 106 | 179,000         | 1340-1660 (320km)  | 5,000                     |

Clusters have all been in place since 2007 – “rolling the dice” continues...

> Cum PC: 11% for C975 and 1% for C850

Have no capability and no intent to avoid collisions

Collision result would 10x-100x worse than an inter-constellation collision

# Just Getting “Lucky”?

## *Normalization of Deviance*

- Probability of Collision (PC) for Iridium-33/C2251 and Cerise collisions:  $2 \times 10^{-4} - 5 \times 10^{-3}$
- Top five most risky encounters over last year shown below
  - Total mass involved  $\sim 2,000\text{kg} - \sim 12,000\text{kg}$

| Object 1        | Object 2       | Date    | Miss (m) | Radial Miss (m) | Relative Velocity (km/s) | Altitude (km) | PC                      |
|-----------------|----------------|---------|----------|-----------------|--------------------------|---------------|-------------------------|
| 9044 - SL8 RB   | 9737 - K890    | 26JUL17 | 46       | 45              | $\sim 14.0$              | $\sim 1008$   | $\sim 1 \times 10^{-3}$ |
| 11425 - K1110   | 18095 - K1850  | 14OCT17 | 61       | 27              | $\sim 14.1$              | $\sim 791$    | $\sim 5 \times 10^{-3}$ |
| 6149 - SL8 RB   | 10020 - SL8 RB | 14NOV17 | 67       | 41              | $\sim 14.2$              | $\sim 973$    | $\sim 5 \times 10^{-4}$ |
| 22693 - SL14 RB | 27055 - K2384  | 30DEC17 | 108      | 8               | $\sim 9.8$               | $\sim 1434$   | $\sim 8 \times 10^{-4}$ |
| 28353 - SL16 RB | 23087 - K2278  | 27FEB18 | 126      | 26              | $\sim 8.8$               | $\sim 858$    | $\sim 1 \times 10^{-3}$ |

Note: Positional uncertainty  $\sim 100\text{m}$

Would have doubled the cataloged population and created  $\sim 200,000$  lethal nontrackable (LNT) debris

# So What is the Real Space Safety Issue?

- mm-sized debris (i.e., LNT) poses ~97-99% of the space safety risk from orbital debris
  - The major source of this population is breakup events of large objects
    - Especially problematic are the massive derelicts
      - As just shown...
  - The LNT population can only be determined by:
    - Inferred from spacecraft anomalies and failures
    - Directly from dedicated *in situ* sensors

It is urgent to start remediation now to eliminate LNT sources

- > e.g., Active Debris Removal (ADR) missions
- > Just in time Collision Avoidance (JCA) or JADR?