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The Goal: Estimate the Exoplanet

Science Yield for Direct Imaging Missions

This is where we'll end up:
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Note: future small adjustments are likely to hot/warm planets; cold LUVOIR Interim Report
planet yields are overestimated.



To Image an Earth-like Planet We
Must Suppress Starlight

Actual Observations
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Blocking starlight before it reaches the telescope

Observational Strengths

Observational Limitations

NASA/JPL/Caltech



Coronagraphs

Using advanced optics to remove starlight inside of the telescope

Nimble

Large field of regard
Yield limited by time, not
fuel

Narrow instantaneous
bandpass (~20%)
Modest throughput
IWAx A/D

OWA exists

WFSC overheads

NASA/JPL




“Yield” Must be Defined by Science
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Stark et al. (2016 SPIE paper)

The “yield” depends on what science you want to obtain and how

you go about obtaining it. This differs for starshades and

coronagraphs! Data products, quantity, and quality will be



“Yield” Must be Defined by Science

__ Detection Only

——
{{‘/—\\\

_ /| Detection + Orbit determination ->
N spectra of exoEarth candidates

—__| 2 Color Detection + Spectra on
just the exoEarth candidates

Detection + Spectra after

140 F Coronagraph Scenario
3 120}
> |
L 100
<
% Z

80
g |
= 60}
u% |
S 40F
5 |

20F <

0 5 10 15 20

Telescope Diameter, D (m)

every observation

Stark et al. (2016 SPIE paper)



Calculatin ieldwith a DRM Code

Observational
Requirements

Central wavelength
Total bandpass

' Astrophysical
Constraints

r]exozodi
Planet sizes

Albedos
Phase functions

Spectral resolution
Signal-to-Noise
Observing strategy

Technical
Requirements

Telescope diameter
Contrast

Contrast floor

Inner working angle
Outer working angle
Total throughput
Overheads



Calculating Yield via Completeness

Z'N

Completeness, C = chance of observing a given planet “type”
around a given star if that planet exists (Brown 2004)

Yield = 7pjanet ZC

Calculated via Monte Carlo simulation with = 10° synthetic
planets per star




Maximizing Yield by Optimizing the

Observations

Optimized Exposure Times
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Stark et al. (2014)

Optimizing exposure times can potentially double yield
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Calculating Yield via Completeness
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Revisiting same star multiple times can increase total
completeness

11



Maximizing Yield by Optimizing

RevisIts

Optimized Revisits
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Optimizing revisits can increase yield by ~50%
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Maximizing Yield by Optimizing

Targets

IWA = 4A/D
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Optimizing the observation plan is critical to yield estimates, as it
ensures that we are always playing to the strengths of the mission
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ExoEarth Candidate Yield

Lessons Learned from Toy Models
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Stark et al. (2014)

Yield of a coronagraph-based mission is most sensitive to
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ExoEarth Candidate Yield

ExoEarth Candidate Yield

Lessons Learned from Toy Models
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We have thoroughly explored phase space to understand

yield scaling relationships.
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Lessons Learned from Toy Models

ExoEarth Candidate Yield

10 20 30 40 50 60
Median exozodi level (zodis)

Stark et al. (2014)

For reasonable mission parameters,

yield is relatively insensitive to exozodi,
assuming we can model/fit it and
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Updated Yield Estimates

We Are No Longer Using Toy Models

The Segmented Coronagraph Design and
Analysis (SCDA), WFIRST, HabEx, LUVOIR,

and SAG13 studies have significantly
advanced the realism of the yield




Astrophysical Assumptions

Planet Occurrence Rate Distribution Taken from SAG13
Community Average
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Astrophysical Assumptions

Planet Occurrence Rate Distribution Taken from SAG13
Community Average

902N (R,P)

dInR dlnP [REPFi inregion R;_; < R <R;

(R in Earth radius, P in years)
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Astrophysical Assumptions

We use the SAG13 continuous distribution, but adopt coarse grid
to communlcate results

Juplter -. - 58:%2; _.

Neptune . n=0.95%%

r-Earth ' n=1.1617
Super-Eart ExoEarth - 1045 o
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Kopparapu et al. (2018) / Stark
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Astrophysical Assumptions

Local Zodi Exozodi

Kalas et al. 2005

Stefan Seip Uniform optical depth equal to 3

Color & pointing-dependent “zodis” of dust, illuminated by

model from Leinert et al. star. Color and brightness are
(1998) dependent on spectral type.
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Astrophysical Assumptions

Stray Light from Binaries

Scattered Light from o Point Source
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Stray light: particulates on mirrors scatter light to far wings of the
PSF

Companion stars outside of the instrument field of view can produce
stray light levels that exceed the suppressed starlight

We include stray light using A/20 RMS surface roughness, {3



Instrument Modeling

We use detailed optical models of coronagraph & starshade

Zimmerman/S
oummer/St.
Laurent

Zimmerman/Soummer/St. Laurent

2D leaked starlight simulations
as a function of stellar diameter
Contrast degradation due to
Instabilities currently modeled
as 101° contrast floor

Use large set of off-axis
(planet) PSFs;
interpolate to all




Instrument Modeling

Detector

p—
—
—
—
=
=
=
-
—_
=
=
=
=
=
p—
=
=
=
—

Adopt a realistically-
improved version of the
WFIRST EMCCD

Read noise, dark current,
and clock induced charge
QE & QE reductions due
to readout inefficiencies

Adopt detailed optical layout
from engineering designs
defining each optical
surface

« Wavelength-dependent
reflectivities/transmissivities




The Exoplanet Yield Landscape

Three critical regimes

Monolith off-axis
Segmented off-axis
Segmented on-axis

For each of these, | adopted the current best-performing
coronagraph and received yield inputs from their designers.
Note that yields could increase a small amount by mixing
different coronagraph designs.

For each calculation, | assumed 6 observations per system on
average (to measure orbits), simultaneous 2-channel detection
at 500 nm, an R=70 SNR=5 spectrum on each exoEarth
candidate @ 1 micron, and optimization of the planet's phase
for characterization. | adopted LUVOIR’s optical design.



ExoEarth Candidate Yield
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ExoEarth Candidate Yield
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ExoEarth Candidate Yield
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ExoEarth Candidate Yield
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The Exoplanet Yi Landscape
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The Exoplan
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ExoEarth Candidate Yield
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ExoEarth Candidate Yield
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LUVOIR A Exoplanet Yield Diversity

All Stars PP
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Note: future small adjustments are likely to hot/warm planets; cold LUVOIR Interim Report
planet yields are overestimated.

Error bars are 1-c and include occurrence rate uncertainties and

finite sampling statistics (randomness of planetary systems)



HabEXx A Exoplanet Yield Diversity
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Note: future small adjustments are likely to hot/warm planets; cold HabEx Interim Report

planet yields are overestimated.



LUVOIR A Target List

§ 5
7 n
5 kS
** H
A F G K M A F G KM 01234567 8910111213
My
HZ Completeness Exposure Time (h) Coronagraph Mask
| eee——— | eeeee—e— | s e———
000 033 067 100 0 21 54 81 o1 2 3 4
a AU
F ..”Q‘-..lw*. F 4:‘,. ;y.
G ... ‘ i’ G ..' ‘..—rt’—.
F\E - --‘-“ .".‘ig.rk ®
éj K c.:.ﬁ'o " K’.:"’:{-. -
’J‘u'; _;.(..$ + :. %
o, 3 ey §
M "J Mf‘ ‘
¥e 1 ¥
Y\ P T P P T, [ A T T P T

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
d (pe) d (pc) d (pc)




HabEx A Target List
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« We have a mature tool to estimate exoplanet yields (and

uncertainties) that optimizes the observation plan and
maximizes the yield

The fidelity of the yield inputs are quickly approaching their
limits

“Yield” i1s defined/impacted by the science we want and how
we go about getting it

HabEx A will detect and characterize ~12 exoEarth
candidates. LUVOIR A will detect and characterize ~50
exoEarth candidates. Both missions will detect a wide variety
of other exoplanets.



